Skip to main content
Log in

Studies on calcification efficacy of stingray fish skin collagen for possible use as scaffold for bone regeneration

  • Original Article
  • Tissue Engineering
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Being the natural organic component in bone, collagen extracted from collagenous tissues is used in the development of matrix for bone regeneration. In the present study, an effort has been made to screen the collagen from skin of stingray fish which is naturally calcified for the purpose. Soluble collagen was extracted from the skin of stingray fish and stabilized with glutaraldehyde and gambier. The stabilized collagen was used as matrix for hydroxyapatite growth by alternate immersion cycles in 1 M Tris-HCl buffer containing 200 mM calcium chloride and 120 mM disodium hydrogen phosphate buffer. The composites were characterized with respect to calcification efficacy, hydrothermal stability and biodegradability. The results show that the calcification was higher for stingray skin (SRS) collagen than that for rat tail tendon (RTT) collagen with both the cross linking agents. Glutaraldehyde cross linked SRS collagen had a higher shrinkage temperature and was more resistant to bacterial collagenase degradation than gambier treated one. The study reveals that glutaraldehyde stabilized SRS collagen may serve to be an ideal candidate to be used for developing scaffold for regeneration of hard tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KE Kadler, C Baldock, J Bella, et al., Collagens at a glance, J Cell Sci, 120, 1955 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. CH Lee, A Singla, Y Lee, Biomedical applications of collagen, Int J Pharm Sci, 22, 11 (2001).

    CAS  Google Scholar 

  3. W Friess, Collagen — biomaterial for drug delivery, Eur J Phar Biopharm, 45, 113 (1998).

    Article  CAS  Google Scholar 

  4. JM Pachence, Collagen-based devices for soft tissue repair, J Biomed Mater Res B Appl Biomater, 33, 35 (1996).

    Article  CAS  Google Scholar 

  5. MC Holmdahl, R Bockermann, JR Backlund, The molecular pathogenesis of collagen-induced arthritis in mice — a model for rheumatoid arthritis, Ageing Res Rev, 1, 135 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. MC Tamby, Y Chanseaud, L Guillevin, New insights into the pathogenesis of systemic sclerosis, Autoimmun Rev, 2, 152 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. FJ O’Brien, Biomaterials and scaffolds for tissue engineering, Materials today, 14, 88 (2011).

    Article  Google Scholar 

  8. W Traub, T Arad, S Weiner, Three-dimensional ordered distribution of crystals in turkey tendon collagen fibres. Proceedings of the National Academy of Sciences, USA, 86, 9822 (1989).

    Article  CAS  Google Scholar 

  9. Y Nomura, S Toki, Y Ishii, et al., Improvement of the material property of shark type I collagen by composing with pig type I collagen, J Agric Food Chem 48, 6332 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Y Nomura, S Toki, Y Ishii, et al., The physicochemical property of shark type I collagen gel and membrane, J Agric Food Chem, 48, 2028 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Y Nomura, M Yamano, C Hayakawa, et al., Structural property and in vitro self-assembly of shark type I collagen. Biosci Biotechnol Biochem 1997; 61: 1919–1923.

    Article  CAS  PubMed  Google Scholar 

  12. Y Nomura, M Yamano, K Shirai, Renaturation of 1 chains from shark skin collagen type, I J Food Sci, 61, 1233 (1995).

    Article  Google Scholar 

  13. KA Piez, Gross, The amino acid composition of some fish collagens: The relation between the composition and structure, J Biol Chem, 235, 995 (1960).

    CAS  PubMed  Google Scholar 

  14. S Yunoki, T Suzuki, M Takai, Stabilisation of low denaturation temperature collagen from fish by physical cross linking methods, J Biosci Bioeng, 96, 575 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. P Songchotikunpan, J Tattiyakul, P Supaphol, Extraction and electro-spinning of gelation from fish skin, Int J Biol Macromol, 42, 247 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. S Rama, G Chandrakasan, Physico-chemical characterization and molecular organization of the collagen from the skin of an air-breathing fish (Ophiocephalusstriatus), J Biosci, 5, 147 (1983).

    Article  CAS  Google Scholar 

  17. R Karthikeyan, NK Chandra Babu, AB Mandal, et al., Soft leathers from Himantura stingray skin, J Soc Leather Tech Chem, 93, 108 (2009).

    CAS  Google Scholar 

  18. R Karthikeyan, NK Chandra Babu, AB Mandal, et al., A new depigmentation and fibre opening method for the conversion of stingray skins into leathers, J Am Leather Chem Assoc, 105, 25 (2011).

    Google Scholar 

  19. M Grey, AM Blais, B Hunt, et al., The USA’s international trade in fish leather from a conservation perspective, Environ Conservat, 3, 100 (2006).

    Google Scholar 

  20. I Bae, K Osatomi, A Yoshida, et al., Characteristics of a self-assembled fibrillar gel prepared from red stingray collagen, Fisher Sci, 73, 765 (2009).

    Article  Google Scholar 

  21. FZ Cui, Y Li, J Ge, Self-assembly of mineralized collagen composites, Mat Sci Egg Rev, 57, 1 (2007).

    Article  Google Scholar 

  22. YP Jiao, ZH Liu, CR Zhou, Fabrication and characterization of PLLA-chitosan hybrid scaffolds with improved cell compatibility, J Biomed Mater Res Part A, 4, 820 (2007).

    Article  Google Scholar 

  23. IY Kim, SJ Seo, HS Moon, et al., Chitosan and its derivatives for tissue engineering applications, Biotechnolo Adv, 26, 1 (2008).

    Article  CAS  Google Scholar 

  24. AF Zhao, WL Grayson, T Maa, et al., Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development, Biomaterials, 27, 1859 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Z Xia, X Yu, X Jiang, et al., Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering, Acta Biomaterialia, 9, 7308 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. DI Zeugolis, RG Paul, G Attenburrow, Cross-linking of extruded collagen bers-A biomimetic three-dimensional scaffold for tissue engineering applications, J Biomed Mat Res Part A, 108, 2886 (2008).

    CAS  Google Scholar 

  27. TJ Sims, NC Avery, AJ Bailey, Quantitative Determination of Collagen Crosslinks, Methods in Molecular Biology, Extracellular Matrix Protocols, Streuli C, Grant M. (ed). Totwa, Humana press (2000).

  28. I Rault, V Frei, D Herbage, et al., Evaluation of different chemical methods for cross-linking collagen gel, films and sponges, J Mater Sci Mater Med, 7, 215 (1996).

    Article  CAS  Google Scholar 

  29. E Jorge-Herrero, P Fernandez, J Turnay, et al., Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen, Biomaterials, 20, 539 (1999).

    Article  PubMed  Google Scholar 

  30. CE Visser, AB Voute, J Oosting, et al., Microwave irradiation and cross-linking of collagen, Biomaterials, 13, 34 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. QB Wessels, E Pretorius, Enhanced stabilization of collagenbased dermal regeneration scaffolds through the combination of physical and chemical crosslinking, South Afr J Sci, 104, 513 (2008).

    Google Scholar 

  32. H Human, D Bezuidenhout, M Torrianni, et al., Optimization of diamine bridges in glutaraldehyde treated bioprosthetic aortic wall tissue, Biomaterials, 23, 2099 (2002).

    Article  CAS  Google Scholar 

  33. M Dahm, W Lyman, A Schewel, et al., Immunogenicity of glutaraldehyde-tanned bovine pericardium, J Thorac Cardiovasc Drug, 99, 1082 (1990).

    CAS  Google Scholar 

  34. G Gong, Z Ling, E Seifter, et al., Aldehyde tanning: the villain in bioprosthetic calcification, J Cardiothorac Surg, 5, 288 (1991).

    Article  CAS  Google Scholar 

  35. A Jayakrishnan, SA Jameela, Glutaraldehyde as a fixative in bioprosthetic and drug delivery matrices, Biomaterials, 17, 471 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. AR Maranto, FJ Schoen, Alkaline phosphatase activity of glutaraldehyde-treated bovine pericardium used in bioprosthetic cardiac valves, Circ Res, 63, 844 (1998).

    Article  Google Scholar 

  37. LHH Olde Damink, PJ Dijkstra, MJA Luyn, et al., Glutaraldehyde as a crosslinking agent for collagen-based biomaterials, J Mater Sci Mater Med, 6, 460 (1995).

    Article  CAS  Google Scholar 

  38. DP Speer, M Chvapil, CD Skelson, et al., Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials, J Biomed Mater Res, 14, 753 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. K Panduranga Rao, C Shanthi, Reduction of calcification by various treatments in cardiac valves, J Biomater Appl, 13, 238 (1999).

    Google Scholar 

  40. C Shanthi, K Panduranga Rao, New treatment using alginate in order to reduce the calcification of bovine bioprosthetic heart valve tissue, J Biomater Sci Polym Ed, 8, 919 (1997a).

    Article  CAS  PubMed  Google Scholar 

  41. C Shanthi, K Panduranga Rao, Reduction of calcification in pericardial heart valve tissue using Aluminum as cross linking agent. Macromolecules New Frontier, Vol. II, Proceedings of the IUPAC International symposium on Advances in Polymer Science and Technology. MACRO 98, Chennai (1998).

    Google Scholar 

  42. HW Sung, RN Huang, LL Huang, et al., Feasibility study of a natural crosslinking reagent for biological tissue fixation, J Biomed Mater Res, 42, 560 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. M G Haugh, C M Murphy, R C McKiernan, et al., Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds, Tiss Eng:Part A, 1 (2011).

    Google Scholar 

  44. C R Lee, A J Grodzinsky, M Spector, The effects of crosslinking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis, Biomaterials, 22, 3145 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. D C Chen, Y L Lai, S Y Lee, et al., Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking, J Biomed Mater Res A, 80, 399 (2007).

    Article  PubMed  Google Scholar 

  46. M Kikuchi, H N Matsumoto, T Yamada, et al., Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites, Biomaterials, 25, 63 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. L Maa, C Gao, Z Mao, et al., Enhanced biological stability of collagen porous scaffolds by using amino acids as novel crosslinking bridges, Biomaterials, 25, 2997 (2004).

    Article  Google Scholar 

  48. SS Dutta, An Introduction to the Principles of Leather Manufacture, 3rd ed., 340–346. Indian Leat Technol Associat Publication, Calcutta, India (1994).

    Google Scholar 

  49. J Kjeldahl, A study of conditions for Kjeldahl determination of nitrogen in protein, J Anal Chem, 22, 366 (1883).

    Google Scholar 

  50. JF Woessner, The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid, Arch Biochem Biophys, 93, 440 (1961).

    Article  CAS  PubMed  Google Scholar 

  51. UK Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680 (1970).

    Article  CAS  PubMed  Google Scholar 

  52. R Usha, SM Jaimohan, A Rajaram, et al., Aggregation and selfassembly of non-enzymatic glycation of collagen in the presence of amino guanidine and aspirin: An invitro study, Int J Bio Macromol, 47, 402 (2010).

    Article  CAS  Google Scholar 

  53. JA Hong, LY Ikada, Y Tabata, A trial to prepare biodegradable collagen-hydroxyapatite composites for bone repair, J Biomat Sci Ed, 12, 689 (2001).

    Article  Google Scholar 

  54. R Usha, T Ramasami, Structure and conformation of intramolecularly cross-linked collagen, Colloids Surf B Biointerfaces, 41, 21 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. M Ijima, Y Moriwaki, Y Kuboki, Oriented growth of octacalcium phosphate on and inside the collagenous matrix in vitro, Connect Tissue Res, 32, 519 (1996).

    Google Scholar 

  56. LHH Olde Damink, PJ Dijkstra, MJA Van Luyn, et al., In vivo degradation of dermal sheep collagen cross-linked using a water soluble carbodiimide, Biomaterials, 17, 679 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Golomb G, Schoen FJ, Smith MS, et al., The role of glutaraldehyde induced crosslinks in calcification of bovine pericardium used in cardiac valve bioprosthesis, Am J Pathol, 127, 122 (1987).

    PubMed Central  CAS  PubMed  Google Scholar 

  58. T Nagai, M Izumi, M Ishii, Fish scale collagen preparation and partial characterization, Int J Food Sci Tech, 39, 239 (2004).

    Article  CAS  Google Scholar 

  59. R Usha, T Ramasami, The effects of urea and n-propanol on collagen denaturation: using DSC, circular dichroism and viscosity, Thermochimica Acta, 409, 201 (2004).

    Article  CAS  Google Scholar 

  60. AD Covington, Modern tanning chemistry, Chem Soc Rev, 26, 111 (1997).

    Article  CAS  Google Scholar 

  61. C Shanthi, K Panduranga Rao, Regulation of biocalcification of bovine pericardial tissue by grafting with poly (glycidyl methacrylate — butylacrylate) — copolymers, J Bioactive and Compatible Polym, 12, 308 (1997b).

    CAS  Google Scholar 

  62. C Shanthi, K Panduranga Rao, Chitosan modified poly (glycidyl methacrylate-butyl acrylate) copolymer grafted bovine pericardial tissue-anticalcification properties, Carbohydr Polym, 44, 123 (2001).

    Article  CAS  Google Scholar 

  63. SL Turek, Orthopaedics: Principles and Their Application, Philadelphia: Lippincott Williams & Wilkins, 2nd Ed. 113 (1985).

    Google Scholar 

  64. H Zoha, G Wang, S Hu, et al., In vitro Biomimetic construction of hydroxyapatite-procine acellular dermal matrix composite scaffold for MC3T3-E1 preosteoblast culture. Tissue Eng Part A, 17, 765 (2010).

    Article  Google Scholar 

  65. S Viguet-Carrin, P Garnero, PD Delmas, The role of collagen on bone strength, Ostoporos Int, 17, 319 (2006).

    Article  CAS  Google Scholar 

  66. M Takahata, M Ito, Y Abe, et al., The effect of anti-resorptive therapies on bone graft healing in an ovaryectomized rat spinal arthrodesis model, Bone, 43, 1057 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Babu Narasimhan Kannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, S., Selvam, R., Sundar, K. et al. Studies on calcification efficacy of stingray fish skin collagen for possible use as scaffold for bone regeneration. Tissue Eng Regen Med 12, 98–106 (2015). https://doi.org/10.1007/s13770-014-0075-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0075-y

Key words

Navigation