Skip to main content
Log in

Local delivery of recombinant human bone morphogenic protein-2 (rhBMP-2) from rhBMP-2/heparin complex fixed to a chitosan scaffold enhances osteoblast behavior

  • Original Article
  • Regenerative Medicine
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The objective of this study was to determine the effects on osteoblast activity of a recombinant human bone morphogenic protein (rhBMP)-2/heparin complex immobilized on a chitosan scaffold (Hep-C-rhBMP-2/chitosan) compared to a rhBMP-2-dipping chitosan (rhBMP-2/chitosan) and to a chitosan scaffold alone. Scanning electron microscopy (SEM) confirmed that the surface and cross morphologies of Hep-C-rhBMP-2/chitosan and rhBMP-2/chitosan were similar to those of the chitosan scaffold, and that the Hep-C-rhBMP-2/chitosan scaffold achieved sustained, controlled release of rhBMP-2 compared to the rhBMP-2/chitosan scaffold. We used measurements of alkaline phosphatase activity, calcium deposition, and real-time PCR to determine that significantly more MG-63 cells were successfully cultured on Hep-C-rhBMP-2/chitosan than on rhBMP-2/chitosan or the chitosan scaffold alone. These results suggest that the Hep-C-rhBMP-2/chitosan scaffold promotes osteoblast behavior beyond the other two scaffolds tested. This system may have advantages for dental and orthopedic applications to regenerate bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Ciapetti, L Ambrosio, L Savarino, et al., Osteoblast growth and function in porous poly epsilon-caprolactone matrices for bone repair: a preliminary study, Biomaterials, 24, 3815 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. R Ewers, W Goriwoda, C Schopper, et al., Histologic findings at augmented bone areas supplied with two different bone substitute materials combined with sinus floor lifting, Clinical Oral Implants Research, 15, 96 (2004).

    Article  PubMed  Google Scholar 

  3. SB Kim, YJ Kim, TL Yoon, et al., The characteristics of a hydroxyapatite-chitosan-PMMA bone cement, Biomaterials, 25, 5715 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. K Park, JH Kim, YS Nam, et al., Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles, Journal of Controlled Release, 122, 305 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. Z Pan Z, P Jiang P, Assessment of the suitability of a new composite as a bone defect filler in a rabbit model, Journal of Tissue Engineering and Regenerative Medicine, 2, 347 (2008).

    Article  CAS  Google Scholar 

  6. M Lee, W Li, RK Siu, et al., Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers, Biomaterials, 30, 6094 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. D Altiok, E Altiok, F Tihminlioglu, Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications, Journal of Materials Science: Materials in Medicine, 21, 2227 (2010).

    PubMed  CAS  Google Scholar 

  8. I Manjubala, S Scheler, J Bössert, et al., Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique, Acta Biomaterialia, 2, 75 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. JD Chen, Y Wang, X Chen, In situ fabrication of nanohydroxyapatite in a macroporous chitosan scaffold for tissue engineering, J Biomater Sci Polym Ed, 20, 1555 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. P Yilgor, K Tuzlakoglu, RL Reis, et al., Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering, Biomaterials, 30, 3551 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. BT Reves, JD Bumgardner, JA Cole, et al., Lyophilization to improve drug delivery for chitosan-calcium phosphate bone scaffold construct: a preliminary investigation, J Biomed Mater Res B Appl Biomater, 90, 1 (2009).

    Article  PubMed  CAS  Google Scholar 

  12. BM Chesnutt, AM Viano, Y Yuan et al., Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration, J Biomed Mater Res A, 88, 491 (2009).

    Article  PubMed  CAS  Google Scholar 

  13. SD Cook, MW Wolfe, SL Salkeld, et al., Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates, J Bone Joint Surg Am, 77, 734 (1995).

    PubMed  CAS  Google Scholar 

  14. SE Kim, O Jeon, JB Lee, et al., Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells, J Biomed Sci, 15, 771 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. EA Wang, V Rosen, JS D’Alessandro, et al., Recombinant human bone morphogenetic protein induces bone formation, Proceedings of the National Academy of Science U S A, 87, 2220 (1990).

    Article  CAS  Google Scholar 

  16. YJ Lee, Y Kim, JY Kim, et al., Effect of Different Concentrations of Escherichia Coli-Derived rhBMP-2 Coating on Osseointegration of Implants in Dogs, J Tissue Eng Regen Med, 9, 209 (2012).

    Article  CAS  Google Scholar 

  17. Z Gugala, AR Davis, CM Fouletier-Dilling, et al., Adenovirus BMP2-induced osteogenesis in combination with collagen carriers, Biomaterials, 28, 4469 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. O Jeon O, SJ Song, SW Kang, et al., Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly (L-lactic-co-glycolic acid) scaffold, Biomaterials, 28, 2763 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. H Nie, BW Soh, YC Fu, et al., Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery, Biotechnol Bioeng, 99, 223 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. J Kim, Y Park, G Tae, et al., Characterization of low-molecularweight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments, J Biomed Mater Res A, 88, 967 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. RS Sellers, R Zhang, SS Glasson, et al., Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2), J Bone Joint Surg Am, 82, 151 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. HS Yang, WG La, SH Bhang, et al., Heparin-conjugated fibrin as an injectable system for sustained delivery of bone morphogenetic protein-2, Tissue Engi Part A, 16, 1225 (2010).

    Article  CAS  Google Scholar 

  23. SW Kang, WG La, JM Kang, et al., Bone morphogenetic protein-2 enhances bone regeneration mediated by transplantation of osteogenically undifferentiated bone marrow-derived mesenchymal stem cells, Biotechnology Letter, 30, 1163 (2008).

    Article  CAS  Google Scholar 

  24. H Lin H, Y Zhao, W Sun, et al., The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2, Biomaterials, 29, 1189 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. G Li, P Yang, X Guo, et al., An in vitro evaluation of inflammation response of titanium functionalized with heparin/fibronectin complex, Cytokine, 56, 208 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. G Li, P Yang, W Qin, et al., The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization, Biomaterials, 32, 4691 (2011).

    Article  PubMed  CAS  Google Scholar 

  27. SY Lee, YP Yun, HR Song, et al., The effect of titanium with heparin/BMP-2 complex for improving osteoblast activity, Carbohydr Polym, 98, 546 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. E Thomas, V Riikka, A Claes, et al., A novel biodegradable delivery system for boen morphogenetic protein-2, Plastic and Reconstructive Surgery, 121, 1920 (2008).

    Article  CAS  Google Scholar 

  29. SE Kim, JH Park, YW Cho, et al., Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering, Journal of Controlled Release, 91, 365 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. S Govender, C Csimma, HK Genant, et al., Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients, J Bone Joint Surg Am, 84-A, 2123 (2002).

    PubMed  Google Scholar 

  31. WJ King, PH Krebsbach, Growth factor delivery: How surface interactions modulate release in vitro and in vivo, Adv Drug Deliv Rev, 64, 1239 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. GN King, N King, AT Cruchley, et al., Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects, J Dent Res, 76, 1460 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. G Zellin, A Linde, Importance of delivery systems for growthstimulatory factors in combination with osteopromotive membranes. An experimental study using rhBMP-2 in rat mandibular defects, J Biomed Mater Res B Appl Biomater, 35, 181 (1997).

    Article  CAS  Google Scholar 

  34. TC Lee, JT Ho, KS Hung, et al., Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment, Neurosurgery, 58, 373 (2006).

    Article  PubMed  Google Scholar 

  35. J Kim, IS Kim, TH Cho, et al., Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells, Biomaterials, 28, 1830 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Z Shi, KG Neoh, ET Kang, et al., Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration, Biomacromolecules, 10, 1603 (2009).

    Article  PubMed  CAS  Google Scholar 

  37. PH Chua, KG Neoh, ET Kang, et al., Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion, Biomaterials, 29, 1412 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. JS Park, K Park K, DG Woo, et al., Triple constructs consisting of nanoparticles and microspheres for bone-marrow-derived stromal-cell-delivery microscaffolds, Small, 4, 1950 (2008).

    Article  PubMed  CAS  Google Scholar 

  39. T Ishibe, T Goto, T Kodama, et al., Bone formation on apatitecoated titanium with incorporated BMP-2/heparin in vivo, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108, 867 (2009).

    Article  PubMed  Google Scholar 

  40. YC Ho, FL Mi, HW Sung, et al., Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor, Int J Pharm, 376, 69 (2009).

    Article  PubMed  CAS  Google Scholar 

  41. JJ Yoon, HJ Chung., HJ Lee, et al., Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor, J Biomed Mater Res A, 79, 934 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. SE Kim, SH Song, YP Yun, et al., The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function, Biomaterials, 32, 366 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. YJ Park, KH Kim, JY Lee, et al., Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration, Biotechnol Appl Biochem, 43, 17 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. K Turksen, U Bhargava, HK Moe, et al., Isolation of monoclonal antibodies recognizing rat bone-associated molecules in vitro and in vivo, Journal of Histochemistry & Cytochemistry, 40, 1339 (1992).

    Article  CAS  Google Scholar 

  45. JJ van den Beucken, XF Walboomers, OC Boerman, et al., Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2, J Control Release, 113, 63 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. F Lecanda, LV Avioli, SL Cheng, Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2, J Cell Biochem, 67, 386 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. DL Diefenderfer, AM Osyczka, JP Garino, et al., Regulation of BMP-induced transcription in cultured human bone marrow stromal cells, J Bone Joint Surg Am, 85-A, 19 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung-Joon Choi or Sung Eun Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, YP., Yang, D.H., Kim, SW. et al. Local delivery of recombinant human bone morphogenic protein-2 (rhBMP-2) from rhBMP-2/heparin complex fixed to a chitosan scaffold enhances osteoblast behavior. Tissue Eng Regen Med 11, 163–170 (2014). https://doi.org/10.1007/s13770-014-0049-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0049-0

Key words

Navigation