Skip to main content
Log in

Rat defect models for bone grafts and tissue engineered bone constructs

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The development of optimized biomaterials for restoring bone defects has been ongoing for many years. Animal models for testing bone grafts and tissue engineered constructs are an important aspect of this research. New bone scaffolding systems need to be tested both in vitro and in vivo, but ultimately animal studies provide answers and confidence in their efficacy prior to clinical applications. A robust set of rat models for understanding bone development in response to implanted materials have been developed. This review will describe frequently used rat bone defect models, such as the calvarial defect, long bone defect, and maxillofacial bone defect models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JR Porter, TT Ruckh, KC Popat, Bone tissue engineering: a review in bone biomimetics and drug delivery strategies, Biotechnol Prog, 25, 1539 (2009).

    PubMed  CAS  Google Scholar 

  2. SV Dorozhkin, Calcium orthophosphates as bioceramics-state of the art, J Funct Biomater, 1, 22 (2010).

    Article  CAS  Google Scholar 

  3. WT Godbey, A Atala, In vitro systems for tissue engineering, Ann N Y Acad Sci, 961, 1 (2002).

    Article  Google Scholar 

  4. AI Pearce, RG Richards, S Milz, et al., Animal models for implant biomaterial research in bone, Eur Cell Mater, 2, 1 (2007).

    Google Scholar 

  5. M Viceconti, R Muccini, M Bernakiewicz, et al., Largesliding contact elements accurately predict levels of boneimplant micromotion relevant to osseointegration, J Biomech, 33, 1611 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. M Geetha, AK Singh, R Asokamani, et al., Ti based biomaterials, the ultimate choice for orthopaedic implants-a review, Prog in Mater Sci, 54, 397 (2009).

    Article  CAS  Google Scholar 

  7. MB Nasab, MR Hassan, Metallic biomaterials of knee and hip-a review, Trends Biomater Artif Organs, 24, 69 (2010).

    Google Scholar 

  8. F Peters, D Reif, Functional materials for bone regeneration from beta tricalcium phosphate, Materwiss Werksttech, 35, 203 (2004).

    Article  CAS  Google Scholar 

  9. B Schröder, S Vössing, G Breves, In vitro studies on active calcium absorption from ovine rumen, J Comp Physiol B, 169, 487 (1999).

    Article  PubMed  Google Scholar 

  10. S Reinwald, D Burr, Review of nonprimate, large animal models for osteoporosis research, J Bone Miner Res, 23, 1353 (2008).

    Article  PubMed  Google Scholar 

  11. G Pellegrini, YJ Seol, R Gruber, et al., Pre-clinical models for oral and periodontal reconstructive therapies, J Dent Res, 88, 1065 (2009).

    Article  PubMed  CAS  Google Scholar 

  12. DR Sumner, TM Turner, RM Urban, Animal models relevant to cementless joint replacement, J Musculoskelet Neuronal Interact, 1, 333 (2001).

    PubMed  CAS  Google Scholar 

  13. P O’Loughlin, S Morr, L Bogunovic, et al., Selection and development of preclinical models in fracture-healing research, J Bone Joint Surg Am, 90, 79 (2008).

    Article  PubMed  Google Scholar 

  14. M Egermann, J Goldhahn, E Schneider, Animal models for fracture treatment in osteoporosis, Osteoporos Int, 16, S129 (2005).

    Article  PubMed  Google Scholar 

  15. SR Sheng, XY Wang, HZ Xu, et al., Anatomy of large animal spines and its comparison to the human spine: a systematic review, Eur Spine J, 19, 46 (2010).

    Article  PubMed  Google Scholar 

  16. PS Gomes, MH Fernandes, Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies, Lab Anim, 45, 14 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. MA Liebschner, Biomechanical considerations of animal models used in tissue engineering of bone, Biomaterials, 25, 1697 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. V Cacciafesta, M Dalstra, C Bosch, et al., Growth hormone treatment promotes guided bone regeneration in rat calvarial defects, Eur J Orthod, 23, 733 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. C Szpalski, J Barr, M Wetterau, et al., Cranial bone defects: current and future strategies, Neurosurg Focus, 29, E8 (2010).

    Article  PubMed  Google Scholar 

  20. A Cacchioli, B Spaggiari, F Ravanetti, et al., The critical sized bone defect: morphological study of bone healing, Ann Fac Medic Vet di Parma, XXVI, 97 (2006).

  21. D Ozçelik, T Turan, F Kabukcuoðlu, et al., Bone induction capacity of the periosteum and neonatal dura in the setting of the rat zygomatic arch fracture model, Arch Facial Plast Surg, 5, 301 (2003).

    Article  PubMed  Google Scholar 

  22. J Mah, J Hung, J Wang, et al., The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects, Eur J Orthod, 26, 475 (2004).

    Article  PubMed  Google Scholar 

  23. E Yoon, S Dhar, DE Chun, et al., In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model, Tissue Eng, 13, 619 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. T Itagaki, T Honma, I Takahashi, et al., Quantitative analysis and localization of mRNA transcripts of type I collagen, osteocalcin, MMP 2, MMP 8, and MMP 13 during bone healing in a rat calvarial experimental defect model, Anat Rec (Hoboken), 291, 1038 (2008).

    Article  CAS  Google Scholar 

  25. H Develioglu, S Unver Saraydin, U Kartal, The bone-healing effect of a xenograft in a rat calvarial defect model, Dent Mater J, 28, 396 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. GF Muschler, VP Raut, TE Patterson, et al., The design and use of animal models for translational research in bone tissue engineering and regenerative medicine, Tissue Eng Part B Rev, 16, 123 (2010).

    Article  PubMed  Google Scholar 

  27. E Freeman, RS Turnbull, The value of osseous coagulum as a graft material, J Periodontal Res, 8, 229 (1973).

    Article  PubMed  CAS  Google Scholar 

  28. JB Mulliken, J Glowacki, Induced osteogenesis for repair and construction in the craniofacial region, Plast Reconstr Surg, 65, 553 (1980).

    Article  PubMed  CAS  Google Scholar 

  29. C Dahlin, P Alberius, A Linde, Osteopromotion for cranioplasty. An experimental study in rats using a membrane technique, J Neurosurg, 74, 487 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. A Linde, C Thorén, C Dahlin, et al., Creation of new bone by an osteopromotive membrane technique: an experimental study in rats, J Oral Maxillofac Surg, 51, 892 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. C Bosch, B Melsen, K Vargervik, Importance of the critical-size bone defect in testing bone-regenerating materials, J Craniofac Surg, 9, 310 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. K Takagi, MR Urist, The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects, Ann Surg, 196, 100 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. JP Schmitz, Z Schwartz, JO Hollinger, et al., Characterization of rat calvarial nonunion defects, Acta Anat (Basel), 138, 185 (1990).

    Article  CAS  Google Scholar 

  34. JP Schmitz, JO Hollinger, The critical size defect as an experimental model for craniomandibulofacial nonunions, Clin Orthop Relat Res, 205, 299 (1986).

    PubMed  Google Scholar 

  35. SM Bidic, JW Calvert, K Marra, Rabbit calvarial wound healing by means of seeded Caprotite® scaffolds, J Dent Res, 82, 131 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. CF Mossaz, VG Kokich, Redevelopment of the calvaria after partial craniectomy in growing rabbits: the effect of altering dural continuity, Acta Anat (Basel), 109, 321 (1981).

    Article  CAS  Google Scholar 

  37. MR Urist, BF Silverman, K Büring, et al., The bone induction principle, Clin Orthop, 53, 243 (1967).

    PubMed  CAS  Google Scholar 

  38. L Uddströmer, V Ritsilä, Healing of membranous and long bone defects. An experimental study in growing rabbits, Scand J Plast Reconstr Surg, 13, 281 (1979).

    Article  PubMed  Google Scholar 

  39. JC Yu, JS McClintock, F Gannon, et al., Regional differences of dura osteoinduction: squamous dura induces osteogenesis, sutural dura induces chondrogenesis and osteogenesis, Plast Reconstr Surg, 100, 23 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. B Mehrara, D Most, J Chang, et al., Basic fibroblast growth factor and transforming growth factor â-1 expression in the developing dura mater correlates with calvarial bone formation, Plast Reconstr Surg, 104, 435 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. P Buma, W Schreurs, N Verdonschot, Skeletal tissue engineering-from in vitro studies to large animal models, Biomaterials, 25, 1487 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. L Le Guehennec, E Goyenvalle, E Aguado, et al., Small-animal models for testing macroporous ceramic bone substitutes, J Biomed Mater Res B Appl Biomater, 72, 69 (2005).

    Article  PubMed  Google Scholar 

  43. S Karaoglu, A Baktir, S Kabak, et al., Experimental repair of segmental bone defects in rabbits by demineralized allograft covered by free autogenous periosteum, Injury, 33, 679 (2002).

    Article  PubMed  Google Scholar 

  44. S Kokubo, R Fujimoto, S Yoakta, et al., Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model, Biomaterials, 24, 1643 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. HY Kim, BY Sohn, UK Seo, et al., An exploratory study of gold wire implantation at acupoints to accelerate ulnar fracture healing in rats, J Physiol Sci, 59, 329 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. E Solheim, EM Pinholt, R Andersen, et al., The effect of a composite of polyorthoester and demineralized bone on the healing of large segmental defects of the radius in rats, J Bone Joint Surg Am, 74, 1456 (1992).

    PubMed  CAS  Google Scholar 

  47. G Alper, S Bernick, M Yazdi, et al., Osteogenesis in bone defects in rats: the effects of hydroxyapatite and demineralized bone matrix, Am J Med Sci, 298, 371 (1989).

    Article  PubMed  CAS  Google Scholar 

  48. A Roshan-Ghias, FM Lambers, M Gholam-Rezaee, et al., In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates, Bone, 49, 1357 (2011).

    Article  PubMed  CAS  Google Scholar 

  49. H Tsuchida, J Hashimoto, E Crawford, et al., Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats, J Orthop Res, 21, 44 (2003).

    Article  PubMed  Google Scholar 

  50. MV Martins, MA da Silva, E MediciFilho, et al., Evaluation of digital optical density of bone repair in rats medicated with ketoprofen, Braz Dent J, 16, 207 (2005).

    Article  PubMed  Google Scholar 

  51. AL Anbinder, JC Junqueira, MN Mancini, et al., Influence of simvastatin on bone regeneration of tibial defects and blood cholesterol level in rats, Braz Dent J, 17, 267 (2006).

    Article  PubMed  Google Scholar 

  52. L Offer, B Veigel, T Pavlidis, et al., Phosphoserine-modified calcium phosphate cements: bioresorption and substitution, J Tissue Eng Regen Med, 5, 11 (2011).

    Article  PubMed  CAS  Google Scholar 

  53. SE Utvåg, KB Iversen, O Grundnes, et al., Poor muscle coverage delays fracture healing in rats, Acta Orthop Scand, 73, 471 (2002).

    Article  PubMed  Google Scholar 

  54. NJ Willett, MT Li, BA Uhrig, et al., Attenuated human bone morphogenetic protein-2-mediated bone regeneration in a rat model of composite bone and muscle injury, Tissue Eng Part C Methods, 19, 316 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. A Hulth, Current concepts of fracture healing, Clin Orthop Relat Res, 249, 265 (1989).

    PubMed  Google Scholar 

  56. DM Nunamaker, Experimental models of fracture repair, Clin Orthop Relat Res, 355Suppl, S56 (1998).

    Article  PubMed  Google Scholar 

  57. L Carlsson, T Rostlund, B Albrektsson, et al., Implant fixation improved by close fit. Cylindrical implant-bone interface studied in rabbits, Acta Orthop Scand, 59, 272 (1988).

    Article  PubMed  CAS  Google Scholar 

  58. DA Garcia, TM Sullivan, DM O’Neill, The biocompatibility of dental implant materials measured in an animal model, J Dent Res, 60, 44 (1981).

    Article  PubMed  CAS  Google Scholar 

  59. JW Frame, A convenient animal model for testing bone substitute materials, J Oral Surg, 38, 176 (1980).

    PubMed  CAS  Google Scholar 

  60. OA Arosarena, WL Collins, Defect repair in the rat mandible with bone morphogenic protein 5 and prostaglandin E1, Arch Otolaryngol Head Neck Surg, 129, 1125 (2003).

    Article  PubMed  Google Scholar 

  61. LJ Rever, PN Manson, MA Randolph, et al., The healing of facial bone fractures by the process of secondary union, Plast Reconstr Surg, 87, 451 (1991).

    Article  PubMed  CAS  Google Scholar 

  62. SR Thaller, J Hoyt, H Tesluk, et al., Effect of insulin-like growth factor-1 on zygomatic arch bone regeneration: a preliminary histological and histometric study, Ann Plast Surg, 31, 421 (1993).

    Article  PubMed  CAS  Google Scholar 

  63. MG Kim, DM Shin, SW Lee, The healing of critical-sized bone defect of rat zygomatic arch with particulate bone graft and bone morphogenetic protein-2, J Plast Reconstr Aesthet Surg, 63, 459 (2010).

    Article  PubMed  Google Scholar 

  64. PD Nguyen, CD Lin, AC Allori, et al., Establishment of a critical-sized alveolar defect in the rat: a model for human gingivoperiosteoplasty, Plast Reconstr Surg, 123, 817 (2009).

    Article  PubMed  CAS  Google Scholar 

  65. BJ Mehrara, PB Saadeh, DS Steinbrech, et al., A rat model of gingivoperiosteoplasty, J Craniofac Surg, 11, 54 (2000).

    Article  PubMed  CAS  Google Scholar 

  66. AH Melcher, Repair of wounds in the periodontium of the rat. Influence of periodontal ligament on osteogenesis, Arch Oral Biol, 15, 1183 (1970).

    Article  PubMed  CAS  Google Scholar 

  67. B Klausen, Microbiological and immunological aspects of experimental periodontal disease in rats: a review article, J Periodontol, 62, 59 (1991).

    Article  PubMed  CAS  Google Scholar 

  68. JH Kim, MK Kim, JH Park, et al., Performance of novel nanofibrous biopolymer membrane for guided bone regeneration within rat mandibular defect, In Vivo, 25, 589 (2011).

    PubMed  CAS  Google Scholar 

  69. L Kostopoulos, T Karring, Augmentation of the rat mandible using guided tissue regeneration, Clin Oral Implants Res, 5, 75 (1994).

    Article  PubMed  CAS  Google Scholar 

  70. A Linde, E Hedner, Recombinant bone morphogenetic protein-2 enhances bone healing, guided by osteopromotive e-PTFE membranes: an experimental study in rats, Calcif Tissue Int, 56, 549 (1995).

    Article  PubMed  CAS  Google Scholar 

  71. MB Guglielmotti, RL Cabrini, Alveolar wound healing and ridge remodeling after tooth extraction in the rat: a histologic, radiographic, and histometric study, J Oral Maxillofac Surg, 43, 359 (1985).

    Article  PubMed  CAS  Google Scholar 

  72. MC Pereira, KG Zecchin, EB Campagnoli, et al., Ovariectomy delays alveolar wound healing after molar extractions in rats, J Oral Maxillofac Surg, 65, 2248 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Kim, HW. Rat defect models for bone grafts and tissue engineered bone constructs. Tissue Eng Regen Med 10, 310–316 (2013). https://doi.org/10.1007/s13770-013-1093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-013-1093-x

Key words

Navigation