Skip to main content
Log in

Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

2-, 3-, and 4-chloroaniline degrading bacteria were obtained by natural genetic exchange between an aniline or toluidine degrading Pseudomonas strain and the chlorocatechol assimilating Pseudomonas sp. B13. Hybrid organisms were isolated through cocultivation of the parent strains in the chemostat as well as through conjugation on solid media in presence of chloroanilines as the selective substrates. Biochemical analysis of the gene products in the hybrid strains clearly showed that the genes coding for the aniline dioxygenase or the genes for the chlorocatechol assimilatory sequence had been transferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azouz WM, Parke DV, Williams RT (1955) Studies in detoxification 62. The metabolism of halobenzene, ortho- and paradichlorobenzenes. Biochem J 59:410–415

    Google Scholar 

  • Bartha R (1971) Fate of herbicide-derived chloroanilines in soil. J Agric Food Chem 19:385–387

    Google Scholar 

  • Bartha R (1980) Pesticide residues in humus. ASM News 46:356–360

    Google Scholar 

  • Biltz H, Stepf K (1904) Über die Chlorierung des Salicylaldehyds. Ber Dtsch Chem Ges 37:4022–4031

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein dye-binding. Anal Biochem 72:248–254

    Google Scholar 

  • Chisaka H, Kearney PC (1970) Metabolism of propanil in soils. J Agric Food Chem 18:854–858

    Google Scholar 

  • Corke CT, Bunce NJ, Beaumont AL, Merrick RL (1979) Diazonium cations as intermediates in the microbial transformation of chloroanilines to chlorinated biphenyls, azo-compounds and triazenes. J Agric Food Chem 27:644–646

    Google Scholar 

  • Deuel LE, Brown KW, Turner FC, Westfall DG, Price JP (1977) Persistence of propanil, DCA, and TCAB in soil and water under flooded rice culture. J Environ Anal 6:127

    Google Scholar 

  • Dorn E, Knackmuss HJ (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J 174:73–84

    Google Scholar 

  • Dorn E, Knackmuss HJ (1978b) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94

    Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70

    Google Scholar 

  • Evans WC, Smith BSW, Fernley HN, Davies JI (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–551

    Google Scholar 

  • Fisher PR, Appleton J, Pemberton JM (1978) Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. J Bacteriol 135:798–804

    Google Scholar 

  • Hartmann J, Reineke W, Knackmuss HJ (1979) Metabolism of 3-chloro, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37:421–428

    Google Scholar 

  • Kaufman DD, Blake I (1973) Microbial degradation of several acetamide, acylanilide, carbamate, toluidine and urea pesticides. Soil Biol Biochem 5:297–308

    Google Scholar 

  • Kilpi S, Backström V, Korhale M (1980) Degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic (2,4-D), benzoic acid and salicylic acid by Pseudomonas sp. HV 3. FEMS Microbiol Lett 8:177–182

    Google Scholar 

  • Knackmuss HJ (1983) Xenobiotics degradation in industrial sewage: haloaromatics as target substrates. Biochem Soc Symp 48:173–190

    Google Scholar 

  • Nozaki M (1970) Meta pyrocatechase (Pseudomonas). In: Tabor H, Tabor CW (eds) Methods in enzymology, vol 17 A. Academic Press, New York, pp 522–525

    Google Scholar 

  • Ornston LN (1966) The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. III. Enzymes of the catechol pathway. J Biol Chem 241:3795–3799

    Google Scholar 

  • Reber H, Helm V, Karanth NGK (1979) Comparative studies on the metabolism of aniline and chloroanilines by Pseudomonas multivorans, Strain An 1. Eur J Appl Microbiol Biotechnol 7:181–189

    Google Scholar 

  • Reineke W, Knackmuss HJ (1979) Construction of haloaromatics utilising bacteria. Nature 277:385–386

    Google Scholar 

  • Reineke W, Knackmuss HJ (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J Bacteriol 142:467–473

    Google Scholar 

  • Reineke W, Jeenes DJ, Williams PA, Knackmuss HJ (1982a) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta-pathway. J Bacteriol 150:195–201

    Google Scholar 

  • Reineke W, Wessels SW, Rubio MA, Latorre J, Schwien U, Schmidt E, Schlömann M, Knackmuss HJ (1982b) Degradation of monochlorinated aromatics following transfer of genes encoding chlorocatechol catabolism. FEMS Microbiol Lett 14:291–294

    Google Scholar 

  • Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347

    Google Scholar 

  • Schmidt E, Remberg G, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192:331–337

    Google Scholar 

  • Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss HJ (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39:58–67

    Google Scholar 

  • Schukat B, Janke D, Krebs D, Fritsche W (1983) Cometabolic degradation of 2- and 3-chloroaniline because of glucose metabolism by Rhodococcus sp. An 117. Curr Microbiol 9:81–86

    Google Scholar 

  • Schwien U, Schmidt E (1982) Improved degradation of monochlorophenols by a constructed strain. Appl Environ Microbiol 44:33–39

    Google Scholar 

  • Surovtseva EG, Vasileva GK, Volnova AI, Baskunov BP (1980) Destruction of monochloroanilines by the meta cleavage by Alcaligenes faecalis. Dokl Akad Nauk SSSR 254:226–230

    Google Scholar 

  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: Pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17:1021–1026

    Google Scholar 

  • Wacek A, Fiedler R (1949) Über die Oxydation des Brenzcatechins zu Muconsäure. Monatsh Chem 80:170–185

    Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    Google Scholar 

  • You JS, Bartha R (1982) Metabolism of 3,4-dichloroaniline by Pseudomonas putida. J Agric Food Chem 30:274–277

    Google Scholar 

  • Zeyer J, Kearney PC (1982) Microbial degradation of para-chloroaniline as sole carbon and nitrogen source. Pest Biochem Physiol 17:215–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latorre, J., Reineke, W. & Knackmuss, HJ. Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch. Microbiol. 140, 159–165 (1984). https://doi.org/10.1007/BF00454919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00454919

Key words

Navigation