Skip to main content
Log in

Photodegradation enhancement of 2-chlorophenol using ZnO–CdS@CS nanocomposite under visible light

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A facile micro-emulsion method used to prepare zinc oxide–cadmium sulfide (ZnO–CdS). Then, chitosan (CS) is utilized as a polymer matrix. Fourier-transform infrared spectroscopy, X-ray diffraction spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, dynamic light scattering, and photoluminescence is applied to evaluate the chemical structure, surface morphology, and the optical properties. Thermal gravimetric analysis is done to estimate the stability of the prepared nanomaterials. The photocatalytic activity of the synthesized nanoparticles was investigated via high-performance liquid chromatography analysis toward 2-chlorophenol degradation under visible light. Obviously, the spectrum of UV–visible for ZnO–CdS@CS nanostructure demonstrates a shift to longer wavelength (red shift) than the other prepared materials with the lowest band gap energy (2.10 eV). Also, the photocatalytic degradation of ZnO, ZnO@CS, ZnO–CdS, and ZnO–CdS@CS is 80%, 84%, 88%, and 98%, consecutively. The pseudo-first-order rate constant (K) for ZnO, ZnO@CS, ZnO–CdS, and ZnO–CdS@CS is 0.0039 min−1, 0.0048 min−1, 0.0058 min−1, and 0.0108 min−1, respectively. The CdS NPs and CS matrix (carbon and nitrogen “C–N”) introduce supplementary energy levels for excitation that causing a decrease in the band gap, increasing the extent of photodegradation in the visible region and assist for electron–hole separation. The reusability studied ZnO–CdS@CS manifested degradation under the same condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem 2012:6. https://doi.org/10.1155/2012/840591

    Article  CAS  Google Scholar 

  • Al-gaashani R, Radiman S, Daud AR, Tabet N, Al-douri Y (2013) XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram Int 39:2283–2292. https://doi.org/10.1016/j.ceramint.2012.08.075

    Article  CAS  Google Scholar 

  • An Q, Meng X, Sun P (2015) High-performance fully nanostructured photodetector with single-crystalline CdS nanotubes as active layer and very long ag nanowires as transparent electrodes. ACS Appl Mater Interfaces 7:22941–22952

    Article  CAS  Google Scholar 

  • Barman J, Borah JP, Sarma KC (2008) Synthesis and characterization of CdS nanoparticles by chemical growth technique. Optoelectron Adv Mater 2:770–774

    CAS  Google Scholar 

  • Bazrafshan E, Amirian P, Mahvi A, Ansari-moghaddam A (2016) Application of adsorption process for phenolic compounds removal from aqueous environments: a systematic review. Glob NEST J 18:146–163

    Article  CAS  Google Scholar 

  • Bhumkar DR, Pokharkar VB (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech 7:E138–E143

    Article  Google Scholar 

  • Bhunia P, Hwang E, Min M, Lee J, Seo S, Some S, Lee H (2012) A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem Commun 48:913–915

    Article  CAS  Google Scholar 

  • Bhunia AK, Jha PK, Rout D, Saha S (2016) Morphological properties and raman spectroscopy of ZnO nanorods. J Phys Sci 21:111–118

    Google Scholar 

  • Bomila R, Srinivasan S, Venkatesan A, Bharath B, Perinbam K (2018) Structural, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method. Mater Res Innov 22(7):379–386

    CAS  Google Scholar 

  • Chong X, Li L, Yan X, Hu D, Li H, Wang Y (2012) Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods. Phys E 44:1399–1405

    Article  CAS  Google Scholar 

  • De Espectroscopia N, Neem M, De Química D (2015) Synthesis, vibrational spectroscopic and thermal properties of oxocarbon cross-linked chitosan. J Braz Chem Soc 26:1247–1256

    Google Scholar 

  • El-Sharaky EA, Mishrif MR, El-Shamy OAA (2018) Synthesis and evaluation of a new trianionic surfactant for the removal of Pb(II) by flotation method. Tenside Surfactants Deterg 55:148–152. https://doi.org/10.3139/113.110545

    Article  CAS  Google Scholar 

  • Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B 59:81–89

    Article  CAS  Google Scholar 

  • Gaya UI (2013) Heterogeneous photocatalysis using inorganic semiconductor solids. Springer, Berlin

    Google Scholar 

  • Hameed ASH, Karthikeyan C, Ahamed AP, Thajuddin N, Alharbi NS, Alharbi SA, Ravi G (2016) In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci Rep 6:24312

    Article  CAS  Google Scholar 

  • Hritcu D, Popa MI, Popa N, Badescu V, Balan V (2009) Preparation and characterization of magnetic chitosan nanospheres. Turk J Chem 33:785–796

    CAS  Google Scholar 

  • Kamal HB, Antonious MS, Mekewi MA, Badawi AM, Gabr K, El Baghdady AM (2015) Nano ZnO/amine composites antimicrobial additives to acrylic paints. Egypt J Pet 24:397–404

    Article  Google Scholar 

  • Kundu P, Deshpande PA, Madras G, Ravishankar N (2011) Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation. J Mater Chem 21:4209–4216

    Article  CAS  Google Scholar 

  • Lavand AB, Malghe YS (2015a) Journal of Asian ceramic societies synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. Integr Med Res 3:305–310. https://doi.org/10.1016/j.jascer.2015.06.002

    Article  Google Scholar 

  • Lavand AB, Malghe YS (2015b) Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite. J Saudi Chem Soc 19:471–478

    Article  Google Scholar 

  • Malashchonak MV, Mazanik AV, Korolik OV, Streltsov EA, Kulak AI (2015) Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method. Beilstein J Nanotechnol 6:2252

    Article  CAS  Google Scholar 

  • Mansur HS, Mansur AAP, Curti E, De Almeida MV (2012) Bioconjugation of quantum-dots with chitosan and N, N, N-trimethyl chitosan. Carbohyd Polym 90:189–196. https://doi.org/10.1016/j.carbpol.2012.05.022

    Article  CAS  Google Scholar 

  • Marsalek R (2014) Particle size and zeta potential of ZnO. APCBEE Proc 9:13–17

    Article  CAS  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    Article  CAS  Google Scholar 

  • Moharram AH, Mansour SA, Hussein MA, Rashad M (2014) Direct precipitation and characterization of ZnO nanoparticles. J Nanomater 2014:20

    Article  Google Scholar 

  • Morales GDV, Sham EL, Cornejo R, Farfan Torres ME (2013) Photocatalytic degradation of 2-chlorophenol by TiO2: kinetic studies. Latin Am Appl Res 43:325–328

    Google Scholar 

  • Patel M, Chavda A, Mukhopadhyay I, Kim J, Ray A (2016) Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale 8:2293–2303

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Qutub N, Sabir S (2012) Optical, thermal and structural properties of CdS quantum dots synthesized by a simple chemical route. Int J Nanosci Nanotechnol 8:111–120

    Google Scholar 

  • Qutub N, Pirzada BM, Umar K, Sabir S (2016) Synthesis of CdS nanoparticles using different sulfide ion precursors: formation mechanism and photocatalytic degradation of Acid Blue-29. J Environ Chem Eng 4:808–817

    Article  CAS  Google Scholar 

  • Rahman PM, Mujeeb VMA, Muraleedharan K, Thomas SK (2018) Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem 11:120–127

    Article  Google Scholar 

  • Samanta PK, Bandyopadhyay AK (2012) Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl Nanosci 2:111–117

    Article  CAS  Google Scholar 

  • Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, Navasery M, Vaziri P (2012) Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int J Mol Sci 13:12242–12258

    Article  CAS  Google Scholar 

  • Stetefeld J, Mckenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. https://doi.org/10.1007/s12551-016-0218-6

    Article  Google Scholar 

  • Warule SS, Chaudhari NS, Shisode RT, Desa KV, Kale BB, More MA (2015) Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour. CrystEngComm 17:140–148. https://doi.org/10.1039/c4ce01738b

    Article  CAS  Google Scholar 

  • Zhang X, Zhou M, Lei L (2006) TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon 44:325–333

    Article  CAS  Google Scholar 

  • Zhong K, Xia J, Li HH, Liang CL, Liu P, Tong YX (2009) Morphology evolution of one-dimensional-based ZnO nanostructures synthesized via electrochemical corrosion. J Phys Chem C 113:15514–15523

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Central Lab of the Egyptian Petroleum Research Institute (EPRI). The authors would like to thank Dr. Osama M. Koreich for his support in language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. A. El-Shamy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Editorial responsibility: Binbin Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Fawal, E.M., El-Shamy, O.A.A. Photodegradation enhancement of 2-chlorophenol using ZnO–CdS@CS nanocomposite under visible light. Int. J. Environ. Sci. Technol. 16, 6827–6838 (2019). https://doi.org/10.1007/s13762-019-02249-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02249-y

Keywords

Navigation