Skip to main content
Log in

ZnO-chitosan/Rectorite Nanocomposite Exhibiting High Photocatalytic Activities under Visible-light Irradiation

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Chitosan (CS), hydrated zinc acetate, and rectorite (REC) were used as raw materials to prepare CS-embedded zinc oxide (ZnO) nanoparticle by a chemical precipitation process. Hydrogen-bonded REC-loaded ZnO-CS nanoparticle was to form ZnO-CS/REC nanocomposite photocatalyst, its morphology and structure were analyzed by means of FTIR, XRD, TGA, SEM, and TEM. The effects of the catalyst dosage, methyl orange (MO) initial concentration and solution pH on photocatalytic performance were also discussed. The experimental results show that the ZnO-CS/REC nanocomposite has a particle size of 100 nm with good dispersion and uniformity. Under irradiation of visible light, 0.6 g/L photocatalyst was used to degrade MO in solution for 90 min at pH 6, then the MO solution (10 mg/L) was decolored by more than 99%, indicating that the ZnO-CS/REC nanocomposite exhibited highly photocatalytic degradation activity. Therefore, the photodegradation kinetic mechanism of MO in aqueous solution is presumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu J, Zhang YP, Gutha YV, et al. Antibacterial Property and Biocompatibility of Chitosan/Poly(vinylalcohol)/ZnO (CS/PVA/ZnO) Beads as an Efficient Adsorbent for Cu(II) Removal from Aqueous Solution[J]. Coll. Surf. B Biointerf., 2017, 156: 340–348

    Article  CAS  Google Scholar 

  2. Habiba U, Islam MDS, Siddique TA. Adsorption and Photocatalytic Degradation of Anionic Dyes on Chitosan/PVA/Na-Titanate/TiO2 Composites Synthesized by Solution Casting Method[J]. Carbohydr. Polym., 2016, 149: 317–331

    Article  CAS  Google Scholar 

  3. Kalaivani JG, Suja SK. TiO2 (Rutile) Embedded Inulin-Aversatile Bio-Nanocomposite for Photocatalytic Degradation of Methylene Blue[J]. Carbohydr. Polym., 2016, 143: 51–60

    Article  CAS  Google Scholar 

  4. Geng X, Lu PF, Zhang C, et al. Room-Temperature NO2 Gas Sensors Based on rGO@ZnO1-x Composites: Experiments and Molecular Dynamics Simulation[J]. Sensors & Actuators: B. Chem., 2019, 282: 690–702

    Article  CAS  Google Scholar 

  5. Feng X, Guo H, Patel K, et al. High Performance, Recoverable Fe3O4@ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Phenol[J]. Chem. Eng. J., 2014, 244: 327–334

    Article  CAS  Google Scholar 

  6. Abdelwahab NA, Ghoneim AM. Photocatalytic Activity of ZnO Coated Magnetic Crosslinked Chitosan/Polyvinyl Alcohol Microspheres[J]. Mater. Sci. Eng. B, 2018, 228: 7–17

    Article  CAS  Google Scholar 

  7. Zeng X, Yang ZH, Meng JL, et al. The Cube-Like Porous ZnO/C Composites Derived From Metal Organic Framework-5 as Anodic Material with High Electrochemical Performance for Ni-Zn Rechargeable Battery[J]. J. Power. Sour., 2019, 438: 226 986

    Article  CAS  Google Scholar 

  8. Midya LP, Patra AS, Banerjee C, et al. Novel Nanocomposite Derived from ZnO/CdS QDs Embedded Crosslinked Chitosan: An Efficient Photocatalyst and Effective Antibacterial Agent[J]. J. Hazard. Mater., 2019, 369: 398–407

    Article  CAS  Google Scholar 

  9. Zheng XJ, Li XX, Li JY, et al. Efficient Removal of Anionic Dye (Congo Red) by Dialdehyde Microfibrillated Cellulose/Chitosan Composite Film with Significantly Improved Stability in Dye Solution[J]. Int. J. Bio. Macromol. 2018, 107: 283–289

    Article  CAS  Google Scholar 

  10. Wu Q, Gao M, Cao S, et al. Chitosan-Based Layered Carbon Materials Prepared via Ionic-Liquid-Assisted Hydrothermal Carbonization and Their Performance Study[J]. J. Taiwan Inst. Chem. Engin., 2019, 101: 231–243

    Article  CAS  Google Scholar 

  11. Borgohain R, Boruah PK, Baruah S. Heavy-Metal Ion Sensor Using Chitosan Capped ZnS Quantum Dots[J]. Sen. Act. B: Chem., 2016, 226: 534–539

    Article  CAS  Google Scholar 

  12. Ma HH, Kong AQ, Ji YH, et al. Ultrahigh Adsorption Capacities For Anionic and Cationic Dyes from Wastewater Using Only Chitosan[J]. J. Clean. Product., 2019, 214: 89–94

    Article  CAS  Google Scholar 

  13. Zhu LF, Li JS, Mai J, et al. Ultrasound-Assisted Synthesis of Chitosan from Fungal Precursors for Biomedical Applications[J]. Chem. Eng. J., 2019, 357: 498–507

    Article  CAS  Google Scholar 

  14. Inar SC, Kaynar ÜH, Aydemir TL, et al. An Efficient Removal of RB5 from Aqueous Solution by Adsorption onto Nano-ZnO/Chitosan Composite Beads[J]. Int. J. Biol. Macromol., 2017, 96: 459–465

    Article  CAS  Google Scholar 

  15. Pathaniaa D, Guptaa D, Al-Muhtaseb AH, et al. Photocatalytic Degradation of Highly Toxic Dyes Using Chitosan-g-Poly (Acrylamide)/ZnS in Presence of Solar Irradiation[J]. J. Photochem. Photobiol. A: Chem., 2016, 329: 61–68

    Article  CAS  Google Scholar 

  16. Zhu HY, Xiao L, Jiang R, et al. Efficient Decolorization of Azo Dye Solution by Visible Light-Induced Photocatalytic Process Using SnO2/ZnO Heterojunction Immobilized In Chitosan Matrix[J]. Chem. Eng. J., 2011, 172: 746–753

    Article  CAS  Google Scholar 

  17. Saravanan R, Aviles J, Gracia F. Crystallinity and Lowering Band Gap Induced Visible Light Photocatalytic Activity of TiO2/CS (Chitosan) Nanocomposites[J]. Int. J. Biol. Macromol., 2018, 109: 1 239–1 245

    Article  CAS  Google Scholar 

  18. Cao QH, Xiao L, Li J, et al. Morphology-Controlled Fabrication of Ag3PO4/Chitosan Nanocomposites with Enhanced Visible-Light Photocatalytic Performance Using Different Molecular Weight Chitosan[J]. Powder Technol., 2016, 292: 186–194

    Article  CAS  Google Scholar 

  19. Bhanvase BA, Veer A, Shirsath SR, et al. Ultrasound Assisted Preparation, Characterization and Adsorption Study of Ternary Chitosan-ZnO-TiO2 Nanocomposite: Advantage Over Conventional Method[J]. Ultrason Sonochem., 2019, 52: 120–130

    Article  CAS  Google Scholar 

  20. Dinh VP, Le NC, Tuyen LA. Insight into Adsorption Mechanism of lead (II) from Aqueous Solution by Chitosan Loaded MnO2 Nanoparticles. Mater. Chem. Phys., 2018, 207: 294–302

    Article  CAS  Google Scholar 

  21. Hassanein A, Salahuddin N, Matsud A. Fabrication of Biosensor Based on Chitosan-ZnO/Polypyrrole Nanocomposite Modified Carbon Paste Electrode for Electroanalytical Application[J]. Mater. Sci. Eng. C, 2017, 80: 494–501

    Article  CAS  Google Scholar 

  22. Samadi S, Khalilian F, Tabatabaee A. Synthesis, Characterization and Application of Cu-TiO2/Chitosan Nanocomposite Thin Film for the Removal of Some Heavy Metals from Aquatic Media[J]. J. Nanostruct. Chem., 2014: 4: 84–92

    Article  Google Scholar 

  23. Li SQ, Zhou PJ, Zhang WS, et al. Effective Photocatalytic Decolorization of Methylene Blue Utilizing ZnO/rectorite Nanocomposite Under Simulated Solar Irradiation[J]. J. Alloy. Comp., 2014: 616 227–616 234

  24. Lu YJ, Chang PR, Zheng PW, et al. Rectorite-TiO2-Fe3O4 Composites: Assembly, Characterization, Adsorption And Photodegradation[J]. Chem. Eng. J., 2014, 255: 49–54

    Article  CAS  Google Scholar 

  25. Li X, Tu H, Huang MT, et al. Incorporation of Lysozyme-Rectorite Composites into Chitosan Films for Antibacterial Properties Enhancement[J]. Int. J. Biol. Macromol., 2017, 102: 789–795

    Article  CAS  Google Scholar 

  26. Wang JT, Fan JM, Li J, et al. Ultrasound Assisted Synthesis of Bi2Nb O5F/Rectorite Composite and Its Photocatalytic Mechanism Insights[J]. Ultrason Sonochem., 2018, 48: 404–411

    Article  CAS  Google Scholar 

  27. Revathi T, Thambidurai S. Immobilization of ZnO on Chitosan-Neem Seed Composite for Enhanced Thermal and Antibacterial Activity[J]. Adv. Powder Technol., 2018, 29: 1 445–1 454

    Article  CAS  Google Scholar 

  28. Khuzwayo Z, Chirwa EMN. Modelling and Simulation of Photocatalytic Oxidation Mechanism of Chlorohalogenated Substituted Phenols in Batch Systems: Langmuir-Hinshelwood Approach[J]. J. Hazard. Mater., 2015, 300: 459–466

    Article  CAS  Google Scholar 

  29. Hu MC, Yao ZH, Liu XG. Enhancement Mechanism of Hydroxyapatite for Photocatalytic Degradation of Gaseous Formaldehyde over TiO2/Hydroxyapatite[J]. J. Taiwan Instit. Chem. Engin., 2018, 85: 91–97

    Article  CAS  Google Scholar 

  30. Zhai M, Xu Y, Zhou B, et al. Keratin-Chitosan/n-ZnO Nanocomposite Hydrogel for Antimicrobial Treatment of Burn Wound Healing: Characterization and Biomedical Application[J]. J. Photochem. Photobio. B: Bio., 2018, 180: 253–258

    Article  CAS  Google Scholar 

  31. Hassanein A, Salahuddin N, Matsuda A, et al. Fabrication of Biosensor Based on Chitosan-ZnO/Polypyrrole Nanocomposite Modified Carbon Paste Electrode for Electroanalytical Application[J]. Mater. Sci. Eng. C, 2017, 80: 494–501

    Article  CAS  Google Scholar 

  32. Yan EY, Wang C, Wang SH, et al. Synthesis and Characterization of Fluorescent Chitosan-ZnO Hybrid Nanospheres[J]. Mater. Sci. Eng. B, 2011, 176: 458–461

    Article  CAS  Google Scholar 

  33. Pandiselvi K, Thambidurai S. Synthesis, Characterization, and Antimicrobial Activity of Chitosan-Zinc Oxide/Polyaniline Composites[J]. Mater. Sci. Semicond. Process., 2015, 31: 573–581

    Article  CAS  Google Scholar 

  34. Chen JJ, Cheng G, Liu R, et al. Enhanced Physical and Biological Properties of Silk Fibroin Nanofibers by Layer-by-Layer Deposition of Chitosan and Rectorite[J]. J. Colloid Interf. Sci., 2018, 523: 208–216

    Article  CAS  Google Scholar 

  35. Naamani LLA, Dobretsov S, Dutta JD, et al. Chitosan-Zinc Oxide Nanocomposite Coatings for the Prevention of Marine Biofouling[J]. Chemosphere, 2017, 168: 408–417

    Article  CAS  Google Scholar 

  36. Zheng H, Du Y, Yu J, et al. Preparation and Characterization of Chitosan/Poly (Vinyl Alcohol) Blend Fibers[J]. J. Appl. Polym. Sci., 2010, 80: 2 558–2 565

    Article  Google Scholar 

  37. Chougule MA, Sen S, Patil VB. Fabrication of Nanostructured ZnO Thin Film Sensor for NO2 Monitoring[J]. Ceram Int., 2012, 38: 2 685–2 692

    Article  CAS  Google Scholar 

  38. Ashkarrana AA, Zad AI, Mahdavi SM, et al. ZnO Nanoparticles Prepared by Electrical Arc Discharge Method in Water[J]. Mater. Chem. Phys., 2009, 118: 6–8

    Article  CAS  Google Scholar 

  39. Revathi T, Thambidurai S. Synthesis of Chitosan Incorporated Neem Seed Extract (Azadirachta indica) for Medical Textiles[J]. Int. J. Biol. Macromol., 2017, 104: 1 890–1 896

    Article  CAS  Google Scholar 

  40. Li LH, Deng JC, Deng HR, et al. Synthesis and Characterization of Chitosan/ZnO Nanoparticle Composite Membranes[J]. Carbohydr. Res., 2010, 345: 994–998

    Article  CAS  Google Scholar 

  41. Bhowmick AD, Banerjee SL, Pramanik N, et al. Organically Modified clay Supported Chitosan/Hydroxyapatite-Zinc Oxide Nanocomposites with Enhanced Mechanical and Biological Properties for the Application in Bone Tissue Engineering[J]. Int. J. Biol. Macromol., 2018, 106: 11–19

    Article  CAS  Google Scholar 

  42. Dehaghi SM, Rahmanifar B, Moradi AM. Removal of Permethrin Pesticide from Water by Chitosan-Zinc Oxide Nanoparticles Composite as an Adsorbent[J]. J. Saudi. Chem. Soci, 2014, 18: 348–355

    Article  CAS  Google Scholar 

  43. Mariana VC, José OSL, Sonia A. Photocatalytic Inactivation of Airborne Microorganisms in Continuous Flow Using Perlite-Supported ZnO and TiO2[J]. Chem. Eng. J., 2019, 374: 914–923

    Article  CAS  Google Scholar 

  44. Zhang WP, Xiao XY, Zheng LL, et al. Fabrication of TiO2/MoS2@Ze-olite Photocatalyst and Its Photocatalytic Activity for Degradation of Methyl Orange under Visible Light[J]. Appl. Surf. Sci., 2015, 358: 468–478

    Article  CAS  Google Scholar 

  45. Midya LP, Patra AS, Banerjee C, et al. Novel Nanocomposite Derived from ZnO/CdS QDs Embedded Crosslinked Chitosan: An Efficient Photocatalyst and Effective Antibacterial Agent[J]. J. Hazard. Mater., 2019, 369: 398–407

    Article  CAS  Google Scholar 

  46. Shao ZF, Wang Y, Zhang YF, et al. Electrochemical Deposition Synthesis of ZnO-NA/Cu2O-NPs Type-II Hierarchical Heterojunction for Enhanced Photoelectrochemical Degradation of Methyl Orange (MO) [J]. J. Photochem. Photobiol. A: Chem., 2018, 364: 657–670

    Article  CAS  Google Scholar 

  47. Abdelwahab NA, Ghoneim AM. Photocatalytic activity of ZnO Coated Magnetic Crosslinked Chitosan/Polyvinyl Alcohol Microspheres[J]. Mater. Sci. Eng. B, 2018, 228: 7–17

    Article  CAS  Google Scholar 

  48. Farzana MH, Meenakshi SK. Visible Light-Driven Photoactivity of Zinc Oxide Impregnated Chitosan Beads for the Detoxification of Textile Dyes[J]. Appl. Catal. A: General., 2015, 503: 124–134

    Article  CAS  Google Scholar 

  49. Abdulhameed AS, Mohammad AKT, Jawad AH, et al. Application of Response Surface Methodology for Enhanced Synthesis of Chitosan Tripolyphosphate/TiO2 Nanocomposite and Adsorption of Reactive Orange 16 Dye[J]. J. Clean. Product., 2019, 232: 43–56

    Article  CAS  Google Scholar 

  50. Wang L, Li Z, Chen J, et al. Enhanced Photocatalytic Degradation of Methyl Orange by Porous Graphene/ZnO Nanocomposite[J]. Environ. Pollution., 2019, 249: 801–811

    Article  CAS  Google Scholar 

  51. Yu M, Ma Y, Liu J, et al. Sub-Coherent Growth of ZnO Nanorod Arrays on Three-Dimensional Graphene Framework as One-Bulk High-Performance Photocatalyst[J]. Appl. Surf. Sci., 2016, 390: 266–272

    Article  CAS  Google Scholar 

  52. Malihe KB, Morasae S, Elham A, et al. Well-Designed Ag/ZnO/3D Graphene Structure for Dye Removal: Adsorption, Photocatalysis and Physical Separation Capabilities[J]. J. Colloid. Interf. Sci., 2019, 537: 66–78

    Article  CAS  Google Scholar 

  53. Zhang YZ, Liu LF, Bruggen BVD, et al. A Free-Standing 3D Nano-Composite Photo-Electrode-Ag/ZnO Nanorods Arrays on Ni Foam Effectively Degrade Berberine[J]. Chem. Eng. J., 2019, 373: 179–191

    Article  CAS  Google Scholar 

  54. Xu F, Chen J, Guo L, et al. In Situ Electrochemically Etching-Derived ZnO Nanotube Arrays for Highly Efficient and Facilely Recyclable Photocatalyst[J]. Appl. Surf. Sci., 2012, 258: 8 160–8 165

    Article  CAS  Google Scholar 

  55. Ali W, Ullah H, Zada A, et al. Effect of Calcination Temperature on the Photoactivities of ZnO/SnO2 Nanocomposites for the Degradation of Methyl Orange[J]. Mater. Chem. Phy., 2018, 213: 259–266

    Article  CAS  Google Scholar 

  56. Lu T, Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Computat. Chem., 2012, 33: 580–592

    Article  CAS  Google Scholar 

  57. Ren T, Jin, ZH, Yang J, et al. Highly Efficient and Stable p-LaFeO3/n-ZnO Heterojunction Photocatalyst for Phenol Degradation under Visible Light Irradiation[J]. J. Hazard. Mater., 2019, 377: 195–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Chen  (陈庆华).

Additional information

Funded by the National Key Research and Development Project (2019YFC1908204), the Fund of Key Laboratory of Measurement and Control System for Offshore Environment (Fuqing Branch of Fujian Normal University) (No. SI-KF1604), the Key Project of Science and Technology Department of Fujian Province(No.2018H0013), the Key Natural Fund Project of Universities in Fujian Province (No. JZ160490), and the Fuqing Branch of Fujian Normal University Cultivation Project (Nos. KY2017NS06, KY201609)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Chiang, PC., Ding, L. et al. ZnO-chitosan/Rectorite Nanocomposite Exhibiting High Photocatalytic Activities under Visible-light Irradiation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 310–319 (2020). https://doi.org/10.1007/s11595-020-2258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2258-9

Key words

Navigation