Skip to main content

Advertisement

Log in

Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Rapid industrialization and extensive use of pesticides in agriculture practices have contributed to the leaking of pesticide residues into water. Among them, organochlorines are highly toxic with half-lives of many years followed by organophosphates (OPs). Being banned in many countries, most of the pesticides are still persisting in the environment. Due to high perseverance, toxicity and potential to bioaccumulation, their removal is imperative. In this direction, conventional adsorbents such as commercial activated carbon, agricultural and natural waste were highly employed. In modern era, nanomaterials (including nanocomposites and nanobiocomposite) with high surface area come out as most economic, rapid and effective catalyst. TiO2 (photocatalyst) and Fe0 by itself or with oxidizing agents are playing a promising role in elimination of pesticide pollution and open the opportunities for exploring other nanoparticles as well. Further, their modified, doped or composites form showed enhanced characteristics due to introduction of new energy levels or increase in surface area. In contrast to TiO2 and Fe0, various nanostructured metal oxides found to degrade OP pesticides by rapid reactive adsorption followed by cleavage of P–O bond via SN2 mechanism. The present review focuses on the present status of pesticide removal using nanoparticles through adsorption together with photocatalytic or redox or reactive degradation. Herein, detailed information on several pesticides, problems related to pesticide, their metabolites, environmental concentration and need for degradation has been presented. In addition, importance of green synthesized nanoparticles along with limitation and potential health risk of nanomaterials in degradation of various organic pollutants has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

POPs:

Persistent organic pollutants

OCs:

Organochlorines

Ops:

Organophosphates

SU:

Substituted ureas

EU:

European Union

MT:

Million ton

CWAs:

Chemical warfare agents

DDT:

Dichlorodiphenyltrichloroethane

HCH:

Hexachlorocyclohexane

SN2 :

Bimolecular nucleophilic substitution

DDE:

Dichlorodiphenyl ethane

DDD:

Dichlorodiphenyl dichloroethane

AC:

Activated carbon

AOPs:

Advanced oxidation processes

nZVI:

Nano zero-valent iron

BHC:

Benzene hexachloride

CB:

Conduction band

VB:

Valence band

UV:

Ultraviolet

TCP:

3,5,6-Trichloro-2-pyridinol

DMMP:

Dimethyl methylphosphonate

MOFs:

Metal–organic frameworks

DCNP:

Diethylcyanophosphate

CNTs:

Carbon nanotubes

References

  • Abdeen Z, Mohammad SG (2014) Study of the adsorption efficiency of an eco-friendly carbohydrate polymer for contaminated aqueous solution by organophosphorous pesticides. Open J Org Polym Mater 4:16–28

    Article  CAS  Google Scholar 

  • Abdullah AH, Mun LK, Zainal Z, Hussein MZ (2013) Photodegradation of chlorophenoxyacetic acids by ZnO/γ-Fe2O3 nanocatalysts: a comparative study. Int J Chem 5:56–65

    Article  CAS  Google Scholar 

  • Affam AC, Chaudhuri M, Kutty SRM, Muda K (2016) Degradation of chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution by FeGAC/H2O2 process. Desalination Water Treat 57(11):5146–5154

    Article  CAS  Google Scholar 

  • Ahmad AL, Tan LS, Shukor SRA (2008) Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J Hazard Mater 151:71–77

    Article  CAS  Google Scholar 

  • Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogenous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18

    Article  CAS  Google Scholar 

  • Aipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37:4790–4797

    Article  CAS  Google Scholar 

  • Akhtar M, Iqbal S, Bhanger MI, Zia-Ul-Haq M, Moazzam M (2009) Sorption of organophosphorous pesticides onto chickpea husk from aqueous solutions. Colloids Surf B 69:63–70

    Article  CAS  Google Scholar 

  • Al Mardini F, Legube B (2009) Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 1. Equilibrium parameters. J Hazard Mater 170:744–753

    Article  CAS  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mat Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  • Anandan C, Nurmatov U, Van Schayck OCP, Sheikh A (2010) Is the prevalence of asthma declining? systematic review of epidemiological studies. Eur J Allergy Clin Immunol 65:152–167

    Article  CAS  Google Scholar 

  • Annual Report (2015–2016) Production of selected major chemicals and petrochemicals, Government of India Ministry of Chemicals & Fertilizers Department of Chemicals and Petrochemicals

  • Aouada FA, Pan Z, Orts WJ, Mattoso LHC (2009) Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. J Appl Polym Sci 114:2139–2148

    Article  CAS  Google Scholar 

  • Averous L, Pollet E (2012) Green nano-biocomposites. Green energy technol. Springer, London, pp 1–11

    Google Scholar 

  • Bach A, Semiat R (2011) The role of activated carbon as a catalyst in GAC/iron oxide/H2O2 oxidation process. Desalination 273:57–63

    Article  CAS  Google Scholar 

  • Baligar PN, Kaliwal BB (2001) Induction of gonadal toxicity to female rats after chronic exposure to mancozeb. Ind Health 39:235

    Article  CAS  Google Scholar 

  • Baligar PN, Kaliwal BB (2002) Reproductive toxicity of carbofuran to the female mice: effects on estrous cycle and follicles. Ind Health 40:345

    Article  CAS  Google Scholar 

  • Bandala ER, Estrada C (2007) Comparison of solar collection geometries for application to photocatalytic degradation of organic contaminants. J Sol Energy Eng 129:22–26

    Article  CAS  Google Scholar 

  • Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of Aldrin. Catal Today 76:189–199

    Article  CAS  Google Scholar 

  • Bandala ER, Andres-Octaviano J, Pastrana P, Torres LG (2006) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures. J Environ Sci Health B 41:553–569

    Article  CAS  Google Scholar 

  • Barba-Bon A (2015) Towards the design of organocatalysts for nerve agents remediation: the case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives. J Hazard Mater 298:73–82

    Article  CAS  Google Scholar 

  • Barcelo D, Hennion MC (1997) Trace determination of pesticides and their degradation products in water, vol 3. Elsevier, Amsterdam, p 1

    Book  Google Scholar 

  • Blanco J (2003) Development of CPC solar collectors for application to photochemical degradation of persistent pollutants in water. Editorial CIEMAT. Madrid, Spain (In Spanish)

  • Bolton JR (2001) Ultraviolet applications handbook. Bolton Photosciences Inc., Ontario

    Google Scholar 

  • Bolton JR, Cater SR (1994) Homogeneous photodegradation of pollutants in contaminated water: an introduction. In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton, pp 467–490

    Google Scholar 

  • Bootharaju MS, Pradeep T (2012) Understanding the degradation pathway of the pesticide chlorpyrifos by noble metal nanoparticles. Langmuir 28:2671–2679

    Article  CAS  Google Scholar 

  • Bonnia NN, Kamaruddin MS, Nawawi MH, Ratim S, Azlina HN, Ali ES (2016) Green biosynthesis of silver nanoparticles using ‘Polygonum Hydropiper’ and study its catalytic degradation of methylene blue. Procedia Chem 19:594–602

    Article  CAS  Google Scholar 

  • Bottaro M, Frascarolo P, Gosetti F, Mazzucco E, Giatiotti V, Polati S, Pollici E, Piacentini L, Pavese G, Gennaro MC (2008) Hydrolytic and photoinduced degradation of tribenuron methyl studied by HPLC-DADMS/ MS. J Am Soc Mass Spectrom 19: 1221–1229

    Article  CAS  Google Scholar 

  • Broughton E (2005) The Bhopal disaster and its aftermath: a review. Environ Health Global Access Sci Source. doi:10.1186/1476-069X-4-6

    Article  Google Scholar 

  • Browning LM, Lee KJ, Huang T, Nallathamby PD, Lowman JE, Xu XN (2009) Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale 1:138–152

    Article  CAS  Google Scholar 

  • Burbano J, Cruz I, Marquez JC, Vasquez AL, Machuca F (2008) Evaluation of zinc oxide based photocatalytic degradation of a commercial pesticide. J Adv Oxid Technol 11:49–55

    CAS  Google Scholar 

  • Burrows HD, Canle LM, Santaballa JA, Steenken S (2002) Invited review: reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B: Biol 67:71–108

    Article  CAS  Google Scholar 

  • Buttiglieri G, Peschka M, Fromel T et al (2009) Environmental occurrence and degradation of the herbicide n-chloridazon. Water Res 43(11):2865–2873

    Article  CAS  Google Scholar 

  • Cahill MG, Caprioli G, Stack M, Vittori S, James KJ (2011) Semi-automated liquid chromatography–mass spectrometry (LC–MS/MS) method for basic pesticides in wastewater effluents. Anal Bioanal Chem 400:587–594

    Article  CAS  Google Scholar 

  • Calabrese EJ (1982) Human breast milk contamination in the United States and Canada by chlorinated hydrocarbon insecticides and industrial pollutants: current status. Int J Toxicol 1:91–98

    CAS  Google Scholar 

  • Carbajo J, Munoz PG, Moranchel AT, Faraldos M, Bahamonde A (2014) Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts. Environ Sci Pollut Res 21:12233–12240

    Article  CAS  Google Scholar 

  • Carnerio RTA, Taketa TB, Neto RJG, Oliveira JL, Campos EVR, Moraes MA, Silva CMG, Beppu MM, Fraceto LF (2015) Removal of glyphosate herbicide from water using biopolymers membranes. J Environ Manag 151:353–360

    Article  CAS  Google Scholar 

  • Chapalamadugu S, Chaudhry GR (1992) Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit Rev Biotechnol 12:357

    Article  CAS  Google Scholar 

  • Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108(40):15446–15449

    Article  CAS  Google Scholar 

  • Chen J, Gao J (1993) The Chinese total diet study in 1990. Part I. Chemical contaminants. AOAC Int 76:1193–1205

    CAS  Google Scholar 

  • Chen DA, Ratliff JS, Hu XF, Gordon WO, Senanayake SD, Mullins DR (2010) Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films. Surf Sci 604:574–587

    Article  CAS  Google Scholar 

  • Chen PJ, Su CH, Tseng CY, Tan SW, Cheng CH (2011) Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar Pollut Bull 63:339–346

    Article  CAS  Google Scholar 

  • Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111(19):6976–6982

    Article  CAS  Google Scholar 

  • Cortes DR, Hites RA (2000) Detection of statistically significant trends in atmospheric concentrations of semivolatile compounds. Environ Sci Technol 34:2826–2829

    Article  CAS  Google Scholar 

  • Dabrowski A (2001) Adsorption, from theory to practice. Adv Colloid Interface Sci 93:135–224

    Article  CAS  Google Scholar 

  • Dai K, Ping T, Chen H, Liu J, Zan L (2009) Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension. Environ Sci Technol 43:1540–1545

    Article  CAS  Google Scholar 

  • de Urzedo APFM, Nascentes CC, Augusti R (2009) Degradation of the insecticides Thiamethoxam and Imidacloprid in aqueous solution as promoted by an innovative Feº/Fe3O4 composite. J Braz Chem Soc 20(1)

  • Danish M, Sulaiman O, Rafatullah M, Hashim R, Ahmad A (2010) Kinetics for the removal of paraquat dichloride from aqueous solution by activated date (Phoenix dactylifera) stone carbon. J Dispers Sci Technol 31:248–259

    Article  CAS  Google Scholar 

  • Das RK (2007) Epidemiology of insecticide poisoning at A.I.I.M.S emergency services and role of its detection by gas liquid chromatography in diagnosis, Medico. Update 7:49

    Google Scholar 

  • de Flora S, Viganò L, D'Agostini F, Camoirano A, Bagnasco M, Bennicelli C, Melodia F, Arillo A (1993) Multiple genotoxicity biomarkers in fish exposed in situ to polluted river water. Mutation Research/Genetic Toxicol 319:167–177

    Article  Google Scholar 

  • Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18:348–355

    Article  CAS  Google Scholar 

  • Deka AC, Sinha SK (2015) Mycogenic silver nanoparticle biosynthesis and its pesticide degradation potentials. Int J Technol Enhanc Emerg Eng Res 3:108–113

    Google Scholar 

  • Devipriya S, Yesodharan S (2005) Photocatalytic degradation of pesticide contaminants in water. Sol Energy Mater Sol Cells 86:309–348

    Article  CAS  Google Scholar 

  • Dixit V, Tewari JC, Obendorf SK (2009) Identification of degraded products of aldicarb due to the catalytic behavior of titanium dioxide/polyacrylonitrile nanofiber. J Chromatogr A 1216:6394–6399

    Article  CAS  Google Scholar 

  • Doddamani HP, Ninnekar HZ (2001) Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43:69–73

    Article  CAS  Google Scholar 

  • Doong R, Chang W (1997) Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide. J Photochem Photobiol A: Chem 107:239–244

    Article  CAS  Google Scholar 

  • Ecobichon DJ (1991) Pesticides. In: Amdur MO, Doull J, Klaassen CD (eds) Casarett and Doull’s toxicology: the basic science of poisons, 4th edn. Pergamon Press, New York, p 580

    Google Scholar 

  • Elliott DW, Lien HL, Zhang WX (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135:317–324

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82

    Article  CAS  Google Scholar 

  • European Commission (EC) (2008) Priority substances and certain other pollutants according to annex II of directive 2008/105/EC. http://ec.europa.eu/environment/water/waterframework/priority_substances.html

  • European Commission (EC) (2016) Pesticide sales statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Pesticide_sales_statistics

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808

    Article  CAS  Google Scholar 

  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U (2010) Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat Toxicol 100:218–228

    Article  CAS  Google Scholar 

  • Fernandez-Casalderrey A, Ferrando MD, Andreu-Moliner E (1992) Endosulfan and diazinon toxicity to the freshwater rotifer Brachionus calyciflorus. J Environ Sci Health Part B 27:155–164

    Article  CAS  Google Scholar 

  • Figueredo-Sobrinho FAA, Lucas FWS, Fill TP, Rodrigues-Filho E, Mascaro LH, Casciano PNS, Lima-Neto P, Correia AN (2015) Insights into electrodegradation mechanism of tebuconazole pesticide on Bi-doped PbO2 electrodes. Electrochimica Acta 154:278–286

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Detoxification of pesticide waste via activated carbon adsorption process. J Hazard Mater 175:1–11

    Article  CAS  Google Scholar 

  • Foster SSD, Chilton PJ, Stuart ME (1991) Mechanisms of groundwater pollution by pesticides. J Inst Water Environ Manag 5:186–193

    Article  CAS  Google Scholar 

  • Fouad DM, Mohamed MB (2011) Photodegradation of chloridazon using coreshell magnetic nanocompsites. J Nanotechnol 2011:1–7

    Article  CAS  Google Scholar 

  • Fouad DM, Mohamed MB (2012) Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion. J Nanomater 2012:1–8

    Article  CAS  Google Scholar 

  • Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin Y, Terui N, Nodasaka Y, Sasa K, Shimizu K, Akasaka T (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity based elimination of ionic dyes. Environ Sci Technol 38:6890–6896

    Article  CAS  Google Scholar 

  • Galindo C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005

    Article  CAS  Google Scholar 

  • Gannur DG, Maka P, Reddy KSN (2008) Organophosphorus compound poisoning in Gulbarga region—a five year study. Indian J Forensic Med Toxicol 2:1–6

    Google Scholar 

  • Gao X, Jiang Y, Zhong Y, Luo ZY, Cen KF (2010) The activity and characterization of CeO2–TiO2 catalysts prepared by the sol–gel method for selective catalytic reduction of NO with NH3. J Hazard Mater 174:734–739

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12

    Article  CAS  Google Scholar 

  • Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–967

    Article  CAS  Google Scholar 

  • Gilliom RJ (2001) Pesticides in the hydrologic system-what do we know and what’s next? Hydrol Process 15:3197–3201

    Article  Google Scholar 

  • Gimba CE, Aminu AS, Kagbu JA, Turoti M, Itodo AU, Sariyya AI (2010) Study of pesticide (dichlorvos) removal from aqueous medium by Arachis hypogaea (groundnut) shell using GC/MS. World Rural Obser 2(1):1–9

    Google Scholar 

  • Goel A, Joseph S, Dutta TK (1998) Organophosphate poisoning: predicting the need for ventilatory support. J Assoc Physician Ind 46:786–790

    CAS  Google Scholar 

  • Gomez S, Marchena CL, Renzini MS, Pizzio L, Pierella L (2015) In situ generated TiO2 over zeolitic supports as reusable photocatalysts for the degradation of dichlorvos. Appl Catal B: Environ 162:167–173

    Article  CAS  Google Scholar 

  • Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357

    Article  Google Scholar 

  • Gupta PK (2004) Pesticide exposure-Indian scene. Toxicology 198:83–90

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R, Dureja P (2011) Decay profile and metabolic pathways of quinalphos in water, soil and plants. Chemosphere 85:710–716

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R (2012a) Degradation of thiram in water, soil and plants: a study by high-performance liquid chromatography. Biomed Chromatogr 26(1):69–75

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R, Dureja P (2012b) Identification of degradation products of thiram in water, soil and plants using LC–MS technique. J Enviro Sci Health Part B 47:823–831

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Salunke R, Kumar R (2012c) In vitro and in vivo studies on degradation of quinalphos in rats. J Hazard Mater 213–214:285–291

    Article  CAS  Google Scholar 

  • Gupta SS, Chakraborty I, Maliyekkal SM, Mark TA, Pandey DK, Das SK, Pradeep T (2015) Simultaneous dehalogenation and removal of persistent halocarbon pesticides from waste water using grapheme nanocomposites: a case study of lindane. Sustain Chem Eng 3:1155–1163

    Article  CAS  Google Scholar 

  • Han ST, Jing L, Xi HL, Xu DN, Zuo Y, Zhang JH (2009) Photocatalytic decomposition of acephate in irradiated TiO2 suspensions. J Hazard Mater 163:1165–1172

    Article  CAS  Google Scholar 

  • Henych J, Stengl V, Slusna M, Grygar TM, Janos P, Kuran P, Stastny M (2015) Degradation of organophosphorus pesticide parathion methyl on nanostructured titania–iron mixed oxides. Appl Surf Sci 344:9–16

    Article  CAS  Google Scholar 

  • Henych J, Janos P, Kormunda M, Tolasz J, Stengl V (2016) Reactive adsorption of toxic organophosphates parathion methyl and DMMP on nanostructuredTi/Ce oxides and their composites. Arab J Chem. doi:10.1016/j.arabjc.2016.06.002

    Article  Google Scholar 

  • Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  • Houskova V, Stengl V, Bakardjieva S, Murafa N, Kalendova A, Oplustil F (2007) Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity. J Phys Chem A 111:4215–4221

    Article  CAS  Google Scholar 

  • Hung HM, Hoffmann MR (1998) Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ Sci Technol 32(19):3011–3016

    Article  CAS  Google Scholar 

  • Ignatowicz K (2009) Selection of sorbent for removing pesticides during water treatment. J Hazard Mater 169:953–957

    Article  CAS  Google Scholar 

  • Ikehata K, El-Din MG (2005) Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (part 1). Ozone: Sci Eng 27:83–114

    Article  CAS  Google Scholar 

  • Isman MB (1994) Botanical insecticides. Pestic Outlook 5:26–31

    CAS  Google Scholar 

  • Jaiswal M, Chauhan D, Sankararamakrishnan N (2012) Copper chitosan nanocomposites: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ Sci Pollut Res 19:2005–2062

    Article  CAS  Google Scholar 

  • Janos P, Kuran P, Kormunda M, Stengl V, Grygar TM, Dosek M, Stastny M, Ederer J, Pilarova V, Vrtoch L (2014) Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. J Rare Earth 32:360–370

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Shankar S (2015a) Synthesis characterization and applications of nano-structured metal hexacyanoferrates: a review. J Environ Anal Chem 2:1000128–1000141

    Article  Google Scholar 

  • Jassal V, Shanker U, Kaith BS, Shankar S (2015b) Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5:26141–26149

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Kaith BS (2016a) Aegle marmelos mediated green synthesis of different nanostructured metal hexacyanoferrates: activity against photodegradation of harmful organic dyes. Scientifica 2016:1–13

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Gahlot S (2016b) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Mater Today Proc 3:1874–1882

    Article  Google Scholar 

  • Jassal V, Shanker U, Gahlot S, Kaith BS, Kamaluddin Iqubal MdA, Samuel P (2016c) Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines. Appl Phys A 122:271–282

    Article  CAS  Google Scholar 

  • Jeschke P, Nauen R, Schindler M et al (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

    Article  CAS  Google Scholar 

  • Jia Z, Li Y, Lu S, Peng H, Ge J, Chen S (2006) Treatment of organophosphatecontaminated waste water by acidic hydrolysis and precipitation. J Hazard Mater 129:234–238

    Article  CAS  Google Scholar 

  • Jing L, Yang C, Zongshan Z (2013) Effective organochlorine pesticides removal from aqueous systems by magnetic nanospheres coated with polystyrene. J Wuhan Univ Technol 29:168–173

    Google Scholar 

  • Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425

    Article  CAS  Google Scholar 

  • Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247

    Article  CAS  Google Scholar 

  • Kafilzadeh F (2015) Assessment of organochlorine pesticide residues in water, sediments and fish from lake tashk. Iran Achiev Life Sci 9:107–111

    Google Scholar 

  • Kannan K, Tanabe S, Giesy JP, Tatsukawa R (1997) Organochlorine pesticides and polychlorinated biphenyls in foodstuffs from Asian and Oceanian countries. Rev Environ Contam Toxicol 152:1–55

    CAS  Google Scholar 

  • Kaur P, Bansal P, Sud D (2013) Heterostructured nanophotocatalysts for degradation of organophosphate pesticides from aqueous streams. J Korean Chem Soc 57(3):382–388

    Article  CAS  Google Scholar 

  • Kaushik A, Sharma HR, Jain S, Dawra J, Kaushik CP (2010) Pesticide pollution of river Ghaggar in Haryana, India. Environ Monit Assess 160:61–69

    Article  CAS  Google Scholar 

  • Khaleel A, Kapoora PN, Klabunde KJ (1999) Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct Mater 11(4):459–468

    Article  CAS  Google Scholar 

  • Khan A, Haque MM, Mir NA, Muneer M, Boxall C (2010) Heterogeneous photocatalysed degradation of an insecticide derivative acetamiprid in aqueous suspensions of semiconductor. Desalination 261:169–174

    Article  CAS  Google Scholar 

  • Khan A, Mir NA, Faisal M, Muneer M (2012) Titanium dioxide-mediated photcatalysed degradation of two herbicide derivatives chloridazon and metribuzin in aqueous suspensions. Int J Chem Eng 2012:1–8

    Article  CAS  Google Scholar 

  • Kim TS, Kim JK, Choi K, Stenstrom MK, Zoh KD (2006) Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion. Chemosphere 62:926–933

    Article  CAS  Google Scholar 

  • Kitous O, Cheikh A, Lounici H, Grib H, Pauss A, Mameri N (2009) Application of the electrosorption technique to remove metribuzin pesticide. J Hazard Mater 161:1035–1039

    Article  CAS  Google Scholar 

  • Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic ZD (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100(30):12142–12153

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2003) Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Appl Catal B: Environ 42:319–335

    Article  CAS  Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570

    Article  CAS  Google Scholar 

  • Kralj MB, Cernigoj U, Franko M (2007) Comparison of Photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion: products and toxicity studies. Water Res 41:4504–4514

    Article  CAS  Google Scholar 

  • Kumar R, Singh B, Singh N, Singh J (2005) Review of management of common poisoning in India”, Medico. Update 5:31

    Google Scholar 

  • Kuo WS, Ho PH (2001) Solar photocatalytic decolorization of methylene blue in water. Chemosphere 45:77–83

    Article  CAS  Google Scholar 

  • Kuroda K, Yamagachi Y, Endo G (1992) Mitotic toxicity, sister chromatid exchange and rec assay of pesticides. Arch Environ Contam Toxicol 23:13–18

    Article  CAS  Google Scholar 

  • Kusvuran E, Erbatur O (2004) Degradation of aldrin in adsorbed system using advanced oxidation processes: comparison of the treatment methods. J Hazard Mater 106B:115–125

    Article  CAS  Google Scholar 

  • Kyriakopoulos G, Doulia D (2006) Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review. Sep Purif Rev 35:97–191

    Article  CAS  Google Scholar 

  • Lagadec AJM, Miller DJ, Lilke AV, Hawthorne SB (2000) Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbons- and pesticide-contaminated soil. Environ Sci Technol 34:1542–1548

    Article  CAS  Google Scholar 

  • Lavand AB, Malghe YS (2015) Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposites. J Saudi Chem Soc 19(5):471–478

    Article  Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    Article  CAS  Google Scholar 

  • Leeling NC, Caisida JE (1966) Metabolites of carbaryl (1-naphthyl methylcarmate) in mammals and enzymatic systems for their formation. J Agric Food Chem 14:281–290

    Article  CAS  Google Scholar 

  • Lemic J, Kovacevic D, Canovic MT, Kovacevic D, Stannic T, Pfend R (2006) Removal of atrazine, lindane and diazinone from water by organo-zeolites. Water Res 40:1079–1085

    Article  CAS  Google Scholar 

  • Li YF (1999) Global technical hexachlorocyclohexane usage and its contamination consequences in environment: from 1947 to 1997. Sci Total Environ 232:123–160

    Article  Google Scholar 

  • Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125(11):1042–1047

    Article  CAS  Google Scholar 

  • Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A 191(1–2):97–105

    Article  CAS  Google Scholar 

  • Lien HL, Zhang WX (2005) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng 131(1):4–10

    Article  CAS  Google Scholar 

  • Lien HL, Zhang WX (2007) Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B 77(1–2):110–116

    Article  CAS  Google Scholar 

  • Lin JH, Kao WC, Tsai KP, Chen CY (2005) A novel algal toxicity testing technique forassessing the toxicity of both metallic and organic toxicants. Water Res 39:1869–1877

    Article  CAS  Google Scholar 

  • Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    Article  CAS  Google Scholar 

  • Lopes RP, De Urzedo APFM, Nascentes CC, Augusti R (2008) Degradation of the insecticides thiamethoxam and imidacloprid by zero-valent metals exposed to ultrasonic irradiation in water medium: electrospray ionization mass spectrometry monitoring. Rapid Commun Mass Spectrom 22:3472–3480

    Article  CAS  Google Scholar 

  • Lowry GV, Johnson KM (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38(19):5208–5216

    Article  CAS  Google Scholar 

  • Lucas EM, Klabunde KJ (1999) Nanocrystals as destructive absorbants for mimcs of chemical warfare agents. Nanostruct Mater 12:179–182

    Article  Google Scholar 

  • Lukey BJ, Hurst CG, Gordon RK, Doctor BP, Clarkson E IV, Slife HF (2004) Six current or potential skin decontaminants for chemical warfare agents exposure: a literature review. In: Flora SJS (ed) Pharmacological perspectives of toxic chemicals and their antidotes. Springer GmbH, Berlin, pp 13–24

    Google Scholar 

  • Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. J Hazard Mater 303:145–153

    Article  CAS  Google Scholar 

  • Malato S, Blanco J, Maldonado MI, Fernández-Ibáñez P, Campos A (2000) Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species; application to the recycling of pesticide containers. Appl Catal B 28:163–174

    Article  CAS  Google Scholar 

  • Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot plant-scale: an overview. Appl Cat B: Environ 37:1–15

    Article  CAS  Google Scholar 

  • Maldonado MI, Malato S, Pérez-Estrada LA, Gernjak W, Oller I, Doménech X, Peral J (2006) Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. J Hazard Mater 38:363–369

    Article  CAS  Google Scholar 

  • Mangalampalli V, Sharma P, Sadanandam G, Ratnamala A, Kumari VD, Subrahmanyam M (2009) An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J Hazard Mater 171:626–633

    Article  CAS  Google Scholar 

  • Manimegalai G, Shanthakumar S, Sharma C (2014) Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support. Int Nano Lett 4(105):1–5

    CAS  Google Scholar 

  • Martın MMB, Sanchez Perez JA, Sanchez JLG, Montes de Oca L, Casas Lopez JL, Oller I, Rodrıguez SM (2008) Degradation of alachlor and pyrimethanil by combined photo-fenton and biological oxidation. J Hazard Mater 155:342–349

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, De Battisti A, Ferro S, Reyna S, Cerro M, Quiroz MA (2008) Removal of the methamidophos pesticide from aqueous solution by electrooxidation using Pb/PbO2, Ti/SnO2 and Si/BDD electrodes. Environ Sci Technol 42:6929–6935

    Article  CAS  Google Scholar 

  • Masselon C, Krier G, Muller JF, Nelieu S, Einhorn J (1996) Laser desorption Fourier transformation cyclotron resonance mass spectrometry of selected pesticides extracted on C18 silica solid-phase extraction membranes. Analyst 121:1429–1433

    Article  CAS  Google Scholar 

  • Maurino V, Minero C, Pelizzetti E, Vincenti M (1999) Photocatalytic transformation of sulfonylurea herbicides over irradiated titanium dioxide particles. Colloids Surf A Physicochem Eng Asp 151:329–338

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  • Mehrpour O, Alfred S, Shadnia S, Keyler DE, Soltaninejad K, Chalaki N et al (2008) Hyperglycemia in acute aluminum phosphide poisoning as a potential prognostic factor. Hum Exp Toxicol 27(7):591–595

    Article  CAS  Google Scholar 

  • Memon GZ, BhangerMI Akhtar M, Talpur FN, Memon JR (2008) Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem Eng J 138:616–621

    Article  CAS  Google Scholar 

  • Meng Q, Doetschman DC, Rizos AK, Lee M-H, Schulte JT, Spyros A, Kanyi CW (2011) Adsorption of organophosphates into microporous and mesoporous NaX zeolites and subsequent chemistry. Environ Sci Technol 45(7):3000–3005

    Article  CAS  Google Scholar 

  • Mills A, Hunte SL (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A: Chem 108:1–35

    Article  CAS  Google Scholar 

  • Mir NA, Khan A, Muneer M, Vijayalakhsmi S (2013) Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous 2 suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment. Sci Total Environ 458:388–398

    Article  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239

    Article  CAS  Google Scholar 

  • Mishra PC, Patel RK (2008) Removal of endosulfan by sal wood charcoal. J Hazard Mater 152:730–736

    Article  CAS  Google Scholar 

  • Mitchell MB, Sheinker VN, Mintz EA (1997) Adsorption and decomposition of dimethyl methylphosphonate on metal oxides. J Phys Chem B 101(51):11192–11203

    Article  CAS  Google Scholar 

  • Mitchell MB, Sheinker VN, Cox WW, Gatimu EN, Tesfamichael AB (2004) The room temperature decomposition mechanism of dimethyl methylphosphonate (DMMP) on alumina-supported cerium oxide—participation of nano-sized cerium oxide domains. J Phys Chem B 108:1634–1645

    Article  CAS  Google Scholar 

  • Mitra D, Varshney L (2013) Remediation of pesticide endosulfan in solution by ionizing radiation, advanced oxidation process and copper nano particle interaction a comparative studies using GC–MS analysis. IOSR-JESTFT 7:8–11

    Article  Google Scholar 

  • Moctezumaa E, Leyva E, Palestino G, de Lasa H (2007) Photocatalytic degradation of methyl parathion: reaction pathways and intermediate reaction products. J Photochem Photobiol A: Chem 186:71–84

    Article  CAS  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 5(1):561–573

    Google Scholar 

  • Morasch B, Bonvin F, Reiser H, Grandjean D, de Alencastro LF, Perazzolo C, Chevre N, Kohn T (2010) Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: micropollutant removal between wastewater and raw drinking water. Environ Toxicol Chem 29:1658–1668

    CAS  Google Scholar 

  • Moschini E (2012) Nanoparticles—biological effects on in vivo and in vitro systems. PhD thesis, Department of Environmental Sciences, University Of Milano-Bicocca

  • Moura FCC, Araujo MH, Costa RCC, Fabris JD, Ardisson JD, Macedo WAA, Lago RM (2005) Efficient use of Fe metal as an electron transfer agent in heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60:1118–1123

    Article  CAS  Google Scholar 

  • Moura FCC, Oliviera GC, Araujo MH, Ardisson JD, Macedo WAA, Lago RM (2006) Highly reactive species formed by interface reaction between Fe0-iron oxides particles: an efficient electron transfer system for environmental applications. Appl Catal A 307:195–204

    Article  CAS  Google Scholar 

  • Muccio AD, Fidente P, Barbini DA, Dommarco R, Seccia S, Morrica P (2006) Application of solid-phase extraction and liquid chromatography–mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J Chromatogr A 1108(1):1–6

    Article  CAS  Google Scholar 

  • Murthy HMR, Manonmani HK (2007) Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. J Hazard Mater 149:18–25

    Article  CAS  Google Scholar 

  • Nagata Y, Futamura A, Miyauchi K, Takagi M (1999) Two different types of dehalogenases Lin A and Lin B involved in γ-HCH degradation Sphingomonas paucimobilis UT26 are localized in the periplasmic space without molecular processing. J Bacteriol 181:5409–5413

    CAS  Google Scholar 

  • Nanseu-Njiki CP, Dedzo GK, Ngameni E (2010) Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust. J Hazard Mater 179:63–71

    Article  CAS  Google Scholar 

  • Navarro A, Tauler R, Lacorte S, Barcelo D (2010) Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J Hydrol 383:18–29

    Article  CAS  Google Scholar 

  • Neumann M, Schulz R, Schäfer K, Müller W, Mannheller W, Liess M (2002) The significance of entry routes as point and non-point sources of pesticides in small streams. Water Res 36:835–842

    Article  CAS  Google Scholar 

  • O’Hannesin SF, Gillham RW (1998) Long-term performance of an in situ ‘iron wall’ for remediation of VOCs. Ground Water 36:164–170

    Article  Google Scholar 

  • Ohnoa K, Minamia T, Matsuia Y, Magara Y (2008) Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: desorption and oxon formation. Water Res 42:1753–1759

    Article  CAS  Google Scholar 

  • Oncescu T, Stefan MI, Oancea P (2010) Photocatalytic degradation of dichlorvos in aqueous TiO2 suspensions. Environ Sci Pollut Res 17:1158–1166

    Article  CAS  Google Scholar 

  • Ormad M, Miguel N, Mosteo R, Rodríguez J, Ovelleiro JL (2011) Study of the presence of pesticides in treated urban wastewaters. In: Stoytcheva M (ed) Pesticides in the modern world-risks and benefits. InTech, Rijeka, pp 453–470

    Google Scholar 

  • Orth WS, Gillham RW (1996) Dechlorination of trichloroethene in aqueous solution using Fe(0). Environ Sci Technol 30:66–71

    Article  CAS  Google Scholar 

  • Padilla S, Wilson VZ, Bushnell PJ (1994) Studies on the correlation between blood cholinesterase inhibition and ‘target tissue’ inhibition in pesticide-treated rats. Toxicology 92:11–25

    Article  CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

  • Papoulias DM, Tillitt DE, Talykina MG, Whyte JJ, Richter CA (2014) Atrazine reduces reproduction in Japanese medaka (Oryzias latipes). Aquat Toxicol 154:230–239

    Article  CAS  Google Scholar 

  • Pérez MF, Sánchez MV, Céspedes FF, García SP, Fernández ID (2010) Prevention of chloridazon and metribuzin pollution using lignin-based formulations. Environ Poll 158(5):1412–1419

    Article  CAS  Google Scholar 

  • Pesticides News No. 49 (2000) Diazinon.The Journal of Pesticide Action Network UK. 20. http://www.pan-uk.org/pestnews/Actives/diazinon.html

  • Pillai HPS, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 07:1–11

    Article  CAS  Google Scholar 

  • Pitarch E, Portoles T, Marin JM, Ibanez M, Albarran F, Hernandez F (2010) Analytical strategy based on the use of liquid chromatography and gas chromatography with triplequadrupole and time-of-flight MS analyzers for investigating organic contaminants in wastewater. Anal Bioanal Chem 397:2763–2776

    Article  CAS  Google Scholar 

  • Prasad GK, Mahato TH, Singh B, Pandey P, Rao AN, Ganesan K, Vijayraghavan R (2007a) Decontamination of sulfur mustard on manganese oxide nanostructures. AIChE J 53(6):1562–1567

    Article  CAS  Google Scholar 

  • Prasad GK, Mahato TH, Pandey P, Singh B, Suryanarayana MVS, Saxena A, Shekhar K (2007b) Reactive sorbent based on manganese oxide nanotubes and nanosheets for the decontamination of 2-chloro-ethyl ethyl sulphide. Microporous Mesoporous Mater 106:256–261

    Article  CAS  Google Scholar 

  • Prasad GK, Mahato TH, Singh B, Ganesan K, Srivastava AR, Kaushik MP, Vijayraghavan R (2008) Decontamination of sulphur mustard and sarin on titania nanotubes. AlChE J 54(11):2957–2963

    Article  CAS  Google Scholar 

  • Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chem A Eur J 8:2602–2607

    Article  CAS  Google Scholar 

  • Ramacharyulu PVRK, Kumar JP, Prasad GK, Dwivedi K (2014) Photoassisted remediation of toxic chemical warfare agents using titania nanomaterials. JSIR 73:308–312

    CAS  Google Scholar 

  • Ramakrishna K, Philip L (2008) Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J Hazard Mater 160(2–3):559–567

    Article  CAS  Google Scholar 

  • Ramos-Delgadoa NA, Gracia-Pinilla MA, Maya-Trevinoa L, Hinojosa-Reyesa L, Guzman-Mara JL, Hernandez-Ramirez A (2013) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263:36–44

    Article  CAS  Google Scholar 

  • Rani M (2012) Studies on decay profiles of quinalphos and thiram pesticides. PhD thesis, Indian Institute of Technology Roorkee, Roorkee, Chapters 1, 5

  • Rani M, Shanker U, Jassal V (2017a) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222

    Article  CAS  Google Scholar 

  • Rani M, Shanker U, Chaurasia A (2017b) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Environ Chem Eng 5(3):2730–2739

    Article  CAS  Google Scholar 

  • Ray AK, Ghosh MC (2006) Aquatic toxicity of carbamates and organophosphates. In: Gupta RC (ed) Toxicology of organophosphate & carbamate compounds. Elsevier, Burlington, pp 657–672

    Chapter  Google Scholar 

  • Rehana Z, Malik A, Ahmad M (1995) Mutagenic activity of the ganges water with special reference to pesticide pollution in the river between Kachla to Kannauj (UP), India. Mutat Res 343:137–144

    Article  CAS  Google Scholar 

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  • Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61

    Article  CAS  Google Scholar 

  • Robertson P (1996) Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. J Clean Prod 4:203–212

    Article  Google Scholar 

  • Rodriguez E, Barrio RJ, Goicolea A, de Balugera ZG (1999) Determination of diflubenzuron and its main metabolites in forestry matrices by liquid chromatography with on-line diode-array and electrochemical detection. Anal Chim Acta 384:63–70

    Article  CAS  Google Scholar 

  • Rodriguez EM, Fernandez G, Alvarez PM, Hernandez R, Beltran FJ (2011) Photocatalytic degradation of organics in water in the presence of iron oxides: effect of pH and light source. Appl Catal B: Environ 102:572–583

    Article  CAS  Google Scholar 

  • Rodriguez-Cruz MS, Andrades MS, Parada AM, Sanchez-Martin MJ (2008) Effect of different wood pretreatments on the sorption-desorption of linuron and metalaxyl by woods. J Agric Food Chem 56:7339–7346

    Article  CAS  Google Scholar 

  • Rojas R, Morillo J, Usero J, Vanderlinden E, Bakouri HE (2015) Adsorption study of low-cost and locally available organic substance and a soil to remove pesticides from aqueous solutions. J Hydrol 520:461–472

    Article  CAS  Google Scholar 

  • Roy K, Sarkar CK, Ghosh CK (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5:953–959

    Article  CAS  Google Scholar 

  • Rusu CN, Yates JT (2000) Adsorption and decomposition of dimethyl methylphosphonate on TiO2. J Phys Chem B 104:12292–12298

    Article  CAS  Google Scholar 

  • Rynkowski J, Farbotko J, Touroude R, Hilaire L (2000) Redox behaviour of ceria-titania mixed oxides. Appl Catal A Gen 203:335–348

    Article  CAS  Google Scholar 

  • Saha S, Kulshrestha G (2008) Hydrolysis kinetics of the sulfonylurea herbicide Sulfosulfuron. Int J Environ Anal Chem 88:891–898

    Article  CAS  Google Scholar 

  • Sahithya K, Das K (2015) Remediation of pesticides using nanomaterials: an overview. Int J Chem Technol Res 8(8):86–91

    Google Scholar 

  • Sahithya K, Das D, Das N (2015) Effective removal of dichlorvos from aqueous solution using biopolymer modified MMT–CuO composites: equilibrium, kinetic and thermodynamic studies. J Mol Liq 211:821–830

    Article  CAS  Google Scholar 

  • Saifuddin N, Nian CY, Zhan LW, Ning KX (2011) Chitosan–silver nanoparticles composite as point of-use drinking water filtration system for household to remove pesticides in water. Asian J Biochem 6:142–159

    Article  CAS  Google Scholar 

  • Salazar-Arredondo E, Solıs-Herediaa M, Rojas-Garcıa E, Hernandez-Ochoa I, Quintanilla-Vega B (2008) Sperm chromatin alteration and DNA damage by methyl-parathion; chlorpyrifos and diazinon and their oxon metabolites in human spermatozoa. Reprod Toxicol 25:455–460

    Article  CAS  Google Scholar 

  • Samreen HK, Suriyaprabha R, Bhawana P, Fulekar MH (2015) Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation. Front Nanosci Nanotech 1:23–27

  • Sarkar B, Venkateswralu N, Rao RN, Bhattacharjee C, Kale V (2007) Treatment of pesticide contaminated surface water for production of potable water by a coagulation–adsorption–nanofiltration approach. Desalination 212:129–140

    Article  CAS  Google Scholar 

  • Sastny M, Štengl V, Henych J et al (2016) Mesoporous manganese oxide for the degradation of organophosphates pesticides. J Mater Sci 51:2634–2642

    Article  CAS  Google Scholar 

  • Sathish M, Viswanathan B, Viswanath RP (2007) Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti–melamine complex. Appl Catal B: Environ 74:307–312

    Article  CAS  Google Scholar 

  • Senthilnathan J, Philip L (2010) Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem Eng J 161:83–92

    Article  CAS  Google Scholar 

  • Senthilnanthan M, Ho DP, Vigneswaran S, Ngo HH, Shon HK (2010) Visible light responsive ruthenium-doped titanium dioxide for the removal of metsulfuron-methyl herbcide in aqueous phase. Sep Purif Technol 75:415–419

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M, Kaith BS (2016a) Towards green synthesis of nanoparticles: from bio-assisted sources to benign solvents. A review. Int J Env Anal Chem 96:801–835

    CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2016b) Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight. RSC Adv 6:94989–94999

    Article  CAS  Google Scholar 

  • Shanker U, Rani M, Jassal V (2017a) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett. doi:10.1007/s10311-017-0650-2

    Article  Google Scholar 

  • Shanker U, Jassal V, Rani M (2017b) Green synthesis of iron hexacyanoferrate nanoparticles: potential candidate for the degradation of toxic PAHs. J Environ Chem Eng. doi:10.1016/j.jece.2017.07.042

    Article  Google Scholar 

  • Sharma MVP, Sadanandam G, Ratnamala A, Kumari VD, Subrahmanyam M (2009) An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J Hazard Mater 171:626–633

    Article  CAS  Google Scholar 

  • Sheinker VN, Mitchell MB (2002) Quantitative study of the decomposition of dimethyl methylphosphonate (DMMP) on metal oxides at room temperature and above. Chem Mater 14:1257–1268

    Article  CAS  Google Scholar 

  • Shet A, Shetty VK (2016) Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation. Environ Sci Pollut Res 23:20055–20064

    Article  CAS  Google Scholar 

  • Shifu C, Gengyu C (2005) Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos. Chemosphere 60:1308–1315

    Article  CAS  Google Scholar 

  • Shih Y, Hsu C, Su Y (2011) Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Sep Purif Technol 76:268–274

    Article  CAS  Google Scholar 

  • Shoiful A, Fujita H, Watanabe I, Honda K (2013) Concentrations of organochlorine pesticides (OCPs) residues in foodstuffs collected from traditional markets in Indonesia. Chemosphere 90:1742–1750

    Article  CAS  Google Scholar 

  • Shoiful A, Ueda Y, Nugroho R, Honda K (2016) Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials. J Water Proc Eng 11:110–117

    Article  Google Scholar 

  • Si YB, Zhang LG, Takagi K (2005) Application of coupled liquid chromatography mass spectrometry in hydrolysis studies of the herbicide ethametsulfuron-methyl. Int J Environ Anal Chem 85:73–88

    Article  CAS  Google Scholar 

  • Singh SP, Gupta K, Kumar S (2014) Judicious use of pesticides in sustainable crop production and PGR management. National Bureau of Plant Genetic Resources, Pusa Campus

    Google Scholar 

  • Singhal RK, Gangadhar B, Basu H, Manisha V, Naidu GRK, Reddy AVR (2012) Remediation of malathion contaminated soil using zero valent iron nano-particles. Am J Analyt Chem 3:76–82

    Article  CAS  Google Scholar 

  • Smedt CD, Ferrer F, Leus K, Spanoghe P (2015) Removal of pesticides from aqueous solutions by adsorption on zeolites as solid adsorbents. Adsorpt Sci Technol 33:457–485

    Article  Google Scholar 

  • Stamate M, Lazar G (2007) Application of titanium dioxide photocatalysis to create self-cleaning materials, MOCM 13. Rom Tech Sci Acad 3:280–285

    Google Scholar 

  • Stastny M, Stengl V, Henych J, Tolasz J, Voma PC, Ederer J (2015) Mesoporous manganese oxide for the degradation of organophosphates pesticides. J Mater Sci 51:2634–2642

    Article  CAS  Google Scholar 

  • Stengl V, Marikova M, Bakardjieva S, Subrt J, Oplustil F, Olsanska M (2005) Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol 80:754–758

    Article  CAS  Google Scholar 

  • Stengl V, Houskova V, Bakardjieva S, Murafa N, Marikova M, Oplustil F, Nemec T (2010) Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents. Mater Charact 61:1080–1088

    Article  CAS  Google Scholar 

  • Stengl V, Grygar TM, Oplustil F, Nemec T (2011) Sulphur mustard degradation on zirconium doped Ti–Fe oxides. J Hazard Mater 192:1491–1504

    Article  CAS  Google Scholar 

  • Stengl V, Kralova D, Oplustil F, Nemec T (2012) Mesoporous manganese oxide for warfare agents degradation. Microporous Mesoporous Mater 156:224–232

    Article  CAS  Google Scholar 

  • Štengl V, Henych J, Janoš P, Skoumal M (2016) Nanostructured metal oxides for stoichiometric degradation of chemical warfare agents. Rev Environ Contam Toxicol 236:239–258

    Google Scholar 

  • Subrt J, Stengl V, Bakardjieva S, Szatmary L (2006) Synthesis of spherical metal oxide particles using homogeneous precipitation of aqueous solutions of metal sulfates with urea. Powder Technol 169:33–40

    Article  CAS  Google Scholar 

  • Suciua NA, Capri E (2009) Adsorption of chlorpyrifos, penconazole and metalaxyl from aqueous solution by modified clays. J Environ Sci Health B 44:525–532

    Article  CAS  Google Scholar 

  • Sud D, Kaur P (2012) Heterogeneous photocatalytic degradation of selected organophosphate pesticides: a review. Crit Rev Environ Sci Technol 42:2365–2407

    Article  CAS  Google Scholar 

  • Sudaryanto A, Kunisue T, Kajiwara N, Iwata H, Adibroto TA, Hartono P, Tanabe S (2006) Specific accumulation of organochlorines in human breast milk from Indonesia: levels, distribution, accumulation kinetics and infant health risk. Environ Pollut 139:107–117

    Article  CAS  Google Scholar 

  • Sullivan LJ, Eldridge JM, Knaak JB, Tallant MJ (1972) 5,6-Dihydro-5,6-dihydroxycarbaryl glucuronide as a significant metabolite of carbaryl in the rat. J Agric Food Chem 20:980–985

    Article  CAS  Google Scholar 

  • Taha SM, Amer ME, Elmarsafy AE, Elkady MY (2014) Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. J Environ Chem Eng 2:2013–2025

    Article  CAS  Google Scholar 

  • Talmage SS, Watson AP, Hauschild V, Munro NB, King J (2007) Chemical warfare agent degradation and contamination. Curr Org Chem 11(3):285–298

    Article  CAS  Google Scholar 

  • Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4157–4170

    Article  CAS  Google Scholar 

  • Tian H, Li J, Mu Z, Li L, Hao Z (2009) Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol 66:84–89

    Article  CAS  Google Scholar 

  • Tien CJ, Lin MC, Chiu WH, Chen CS (2013) Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure. Environ Pollut 179:95–104

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3:417–433

    Google Scholar 

  • Tomasevic A, Kiss E, Petovic S, Mijin D (2010) Study on the photocatalytic degradation of insecticide methomyl in water. Desalination 262:228–234

    Article  CAS  Google Scholar 

  • Trubitsyn DA, Vorontsov AV (2005) Experimental study of dimethyl methylphosphonate decomposition over anatase TiO2. J Phys Chem B 109:21884–21892

    Article  CAS  Google Scholar 

  • Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G (2014) Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem App 2014:742346–742353

    CAS  Google Scholar 

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038

    Article  CAS  Google Scholar 

  • Varma R, Varma DR (2005) The Bhopal disaster of 1984. Bull Sci Technol Soc 25(1):37–45

    Article  Google Scholar 

  • Vasilic Z, Drevenkar V, Rumenjak V, Stengl B, Frobe Z (1992) Urinary excretion of diethylphosphorus metabolites in persons poisoned by quinalphos or chlorpyrifos. Arch Environ Contam Toxicol 22:351–357

    Article  CAS  Google Scholar 

  • Vukcevic MM, Kalijadis AM, Vasiljevic TM, Babic BM, Lausevic ZV, Lausevic MD (2015) Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption. Microporous Mesoporous Mater 214:156–165

    Article  CAS  Google Scholar 

  • Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD and HD with nano-size MgO. J Phys Chem B 103:3225–3228

    Article  CAS  Google Scholar 

  • Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) Reactions of VX, GD, and HD with nanosize CaO: autocatalytic dehydrohalogenation of HD. J Phys Chem B 104:5118–5123

    Article  CAS  Google Scholar 

  • Wagner GW, Procell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. J Am Chem Soc 123:1636–1644

    Article  CAS  Google Scholar 

  • Wagner GW, Peterson GW, Mahle JJ (2012) Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: the development of self-decontaminating paints. Ind Eng Chem Res 51:3598–3603

    Article  CAS  Google Scholar 

  • Wang C, Zhang WX (1997) Nanoscale iron particles for reductive dechlorination of PCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  • Wang Z, Peng P, Huang W (2009) Dechlorination of γ-hexachlorocyclohexane by zero-valent metallic iron. J Hazard Mater 166:992–997

    Article  CAS  Google Scholar 

  • Wang YS, Chen WC, Lin LC, Yen JH (2010) Dissipation of herbicides chlorsulfuron and imazosulfuron in the soil and the effects on the soil bacterial community. J Environ Sci Health Part B 45:449–455

    Article  CAS  Google Scholar 

  • Wang HH, Kou XM, Pei ZG, Xiao JQ, Shan XQ, Xing BS (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  CAS  Google Scholar 

  • Winter M, Hamal D, Yang XX, Kwen H, Jones D, Rajagopalan S, Klabunde KJ (2009) Defining reactivity of solid sorbents: what is the most appropriate metric? Chem Mater 21:2367–2374

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1990) Public health impact of pesticides used in agriculture, Geneva

  • Wu RJ, Chen CC, Chen MH, Lua CS (2009) Titanium dioxide mediated heterogeneous photocatalytic degradation of terbufos: parameter study and reaction pathways. J Hazard Mater 162:945–953

    Article  CAS  Google Scholar 

  • Xu AW, Gau Y, Liu HQ (2002) The preparation, characterization and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal 207(2):151–157

    Article  CAS  Google Scholar 

  • Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321:30–38

    Article  CAS  Google Scholar 

  • Yang YC, Baker JA, Ward JR (1992) Decontamination of chemical warfare agents. Chem Rev 92:1729–1743

    Article  CAS  Google Scholar 

  • Yasmina M, Mourad K, Mohammed SH, Khaoula C (2014) Treatment heterogenous photocatalysis: factors influencing the photocatalytic degradation by TiO2. Energy Proc 50:559–566

    Article  CAS  Google Scholar 

  • Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674

    Article  CAS  Google Scholar 

  • Yu B, Zeng J, Gong L, Yang XQ, Zhang L, Chen X (2008) Photocatalytic degradation investigation of dicofol. Chin Sci Bull 53:27–32

    Article  CAS  Google Scholar 

  • Yu H, Wang X, Sun H, Huo M (2010) Photocatalytic degradation of malathion in aqueous solution using an Au–Pd–TiO2 nanotube film. J Hazard Mater 184:753–758

    Article  CAS  Google Scholar 

  • Zabar R, Komel T, Fabjan J, Kralj M, Trebse P (2012) Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin. Chemosphere 89(3):293–301

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 53(4):323–332

    Article  Google Scholar 

  • Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 404:387–395

    Article  Google Scholar 

  • Zhang L, Yan F, Wang Y (2006) Photocatalytic degradation of methamidophos by UV irradiation in the presence of nano-TiO2. J Inorg Mater 42:1379–1387

    Article  CAS  Google Scholar 

  • Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

    CAS  Google Scholar 

  • Zhenwu T, Huang Q, Yang Y, Zhu X, Haihui F (2013) Organochlorine pesticides in the lower reaches of Yangtze River: occurrence, ecological risk and temporal trends. Ecotoxicol Environ Saf 87:89–97

    Article  CAS  Google Scholar 

  • Zhou JL, Maskaoui K, Qiu YW, Hong HS, Wang ZD (2001) Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay, China. Environ Pollut 113:373–384

    Article  CAS  Google Scholar 

  • Zhou JK, Liu RY, Song G, Zhang MC (2009) Determination of carbamate and benzoylurea insecticides in peach juice drink by floated organic drop microextraction-high performance liquid chromatography. Anal Lett 42:1805–1819

    Article  CAS  Google Scholar 

  • Zubieta CE, Messina PV, Schulz PC (2012) Photocatalytic degradation of acridine dyes using anatase and rutile TiO2. J Environ Manag 101:1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Shanker.

Additional information

Editorial responsibility: J. Trögl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Shanker, U. Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations. Int. J. Environ. Sci. Technol. 15, 1347–1380 (2018). https://doi.org/10.1007/s13762-017-1512-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1512-y

Keywords

Navigation