Skip to main content
Log in

Influence of non-thermal plasma after-treatment technology on diesel engine particulate matter composition and NOx concentration

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The effect of non-thermal plasma technology for particulate matter removal and nitrogen oxide emission reduction from diesel exhaust has been investigated. A sample of exhaust was cooled to the ambient temperature and passed through a dielectric barrier discharge reactor. This reactor was employed for producing plasma inside the diesel exhaust. A range of discharge powers by varying the applied voltage from 7.5 to 13.5 kV (peak–peak) at a frequency of 50 Hz has been evaluated during the experiments. Regarding the NOx emission concentration, the maximum removal efficiency has been achieved at energy density of 27 J/L. Soot, soluble organic fraction and sulphate components of diesel particulate matter have been analysed separately, and the consequence of plasma exposure on particle size distribution on both the nucleation and accumulation modes has been studied. Plasma was found to be very effective for soot removal, and it could approach complete removal efficiency for accumulation mode particles. However, when applied voltage approached 12 kV, the total number of nucleation mode particles increased by a factor of 50 times higher than the total particle numbers at the reactor inlet. This increase in nucleation mode particles increased even more when applied voltage was set at 13.5 kV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akiyama H, Sakugawa T, Namihira T, Takaki K, Minamitani Y, Shimomura N (2007) Industrial applications of pulsed power technology. IEEE Trans Dielectr Electr Insul 14:1051–1064

    Article  CAS  Google Scholar 

  • Arai M, Saito M, Yoshinaga S (2004) Effect of oxygen on NOx removal in corona discharge field: NOx behavior without a reducing agent. Combust Sci Technol 176:1653–1665

    Article  CAS  Google Scholar 

  • Babaie M, Davari P, Zare F, Rahman MM, Rahimzadeh H, Ristovski Z, Brown R (2013) Effect of pulsed power on particle matter in diesel engine exhaust using a DBD plasma reactor. IEEE Trans Plasma Sci 41:2349–2358

    Article  CAS  Google Scholar 

  • Chae JO (2003) Non-thermal plasma for diesel exhaust treatment. J Electrostat 57:251–262

    Article  CAS  Google Scholar 

  • Fitzsimmons C, Shawcross J, Whitehead J (1999) Plasma-assisted synthesis of N2O5 from NO2 in air at atmospheric pressure using a dielectric pellet bed reactor. J Phys D Appl Phys 32:1136

    Article  CAS  Google Scholar 

  • Fushimi C, Madokoro K, Yao S, Fujioka Y, Yamada K (2008) Influence of polarity and rise time of pulse voltage waveforms on diesel particulate matter removal using an uneven dielectric barrier discharge reactor. Plasma Chem Plasma Process 28:511–522

    Article  CAS  Google Scholar 

  • Hui J, Tao S, Cheng Z, Wenfeng L, Ping Y, Xueke C, Schamiloglu E (2013) Experimental study of Q–V Lissajous figures in nanosecond-pulse surface discharges. IEEE Trans Dielectr Electr Insul 20:1101–1111

    Article  Google Scholar 

  • Inan US, Gołkowski M (2010) Principles of plasma physics for engineers and scientists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jolibois J, Takashima K, Mizuno A (2012) Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NOx removal. J Electrostat 70:300–308

    Article  CAS  Google Scholar 

  • Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29:575–588

    Article  CAS  Google Scholar 

  • Kittelson DB, Watts WF, Johnson JP (2006) On-road and laboratory evaluation of combustion aerosols—Part 1: summary of diesel engine results. J Aerosol Sci 37:913–930

    Article  CAS  Google Scholar 

  • Lebouvier A, Fresnet F, Fabry F, Boch V, Rohani V, Cauneau FO, Fulcheri L (2011) Exhaust gas fuel reforming of diesel fuel by nonthermal arc discharge for NOx trap regeneration application. Energy Fuels 25:1034–1044

    Article  CAS  Google Scholar 

  • Majewski WA (2002) Diesel particulate matter. In: Dieselnet technology guide, Ecopoint Inc, http://www.dieselnet.com/tech/dpm.php

  • Majewski WA (2004) Plasma exhaust treatment. DieselNet Technology Guide. Copyright© Ecopoint Inc. Revision. http://www.DieselNet.com

  • Maricq MM, Chase RE, Xu N, Laing PM (2002) The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: light duty diesel vehicles. Environ Sci Technol 36:283–289

    Article  CAS  Google Scholar 

  • Merkel G, Cutler W, Warren C (2001) Thermal durability of wall-flow ceramic diesel particulate filters. SAE Trans 110:168–182

    Google Scholar 

  • Mohapatro S, Rajanikanth BS (2011) Study of pulsed plasma in a crossed flow dielectric barrier discharge reactor for improvement of NOx removal in raw diesel engine exhaust. Plasma Sci Technol 13:82

    Article  CAS  Google Scholar 

  • Morawska L, Ristovski Z, Jayaratne E, Keogh DU, Ling X (2008) Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 42:8113–8138

    Article  CAS  Google Scholar 

  • Okubo M, Miyashita T, Kuroki T, Miwa S, Yamamoto T (2004) Regeneration of diesel particulate filter using nonthermal plasma without catalyst. IEEE Trans Ind Appl 40:1451–1458

    Article  CAS  Google Scholar 

  • Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T (2008) Total diesel emission control technology using ozone injection and plasma desorption. Plasma Chem Plasma Process 28:173–187

    Article  CAS  Google Scholar 

  • Omers CM, Mccarry BE, Malek F, Quinn JS (2004) Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 304:1008–1010

    Article  CAS  Google Scholar 

  • Rajanikanth B, Srinivasan A, Ravi V (2005) Discharge plasma treatment for NO x reduction from diesel engine exhaust: a laboratory investigation. IEEE Trans Dielectr Electr Insul 12:72–80

    Article  CAS  Google Scholar 

  • Ramanathan V (2007) Global dimming by air pollution and global warming by greenhouse gases. Nucl Atmos Aerosols 6:473–483

    Article  Google Scholar 

  • Ristovski Z, Jayaratne E, Lim M, Ayoko G, Morawska L (2006) Influence of diesel fuel sulfur on nanoparticle emissions from city buses. Environ Sci Technol 40:1314–1320

    Article  CAS  Google Scholar 

  • Ristovski ZD, Miljevic B, Surawski NC, Morawska L, Fong KM, Goh F, Yang IA (2012) Respiratory health effects of diesel particulate matter. Respirology 17:201–212

    Article  Google Scholar 

  • Sato S, Kawada Y, Sato S, Hosoya M, Mizuno A (2011) The study of NOx reduction using plasma-assisted SCR system for a heavy duty diesel engine. SAE Technical Paper

  • Seaton A, Macnee W, Donaldson K, Godden D (1995) Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  CAS  Google Scholar 

  • Seinfeld JH (1975) Air pollution: physical and chemical fundamentals. McGraw-Hill Inc, New York

    Google Scholar 

  • Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandstrom T, Dahlen SE (2001) Health effects of diesel exhaust emissions. Eur Respir J 17:733–746

    Article  CAS  Google Scholar 

  • Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M (2014) The role of non-thermal plasma technique in NOx treatment: a review. Renew Sustain Energy Rev 40:886–901

    Article  CAS  Google Scholar 

  • Thomas Suzanne E, Martin Anthony R, Raybone David, Shawcross James T, Ka Lok NG, Beech P (2000) Non thermal plasma aftertreatment of particulates—theoretical limits and impact on reactor design. CEC/SAE Spring Fuels & Lubricants Meeting & Exposition, Paris

    Book  Google Scholar 

  • Vinh TQ, Watanabe S, Furuhata T, Arai M (2012) Fundamental study of NOx removal from diesel exhaust gas by dielectric barrier discharge reactor. J Mech Sci Technol 26:1921–1928

    Article  Google Scholar 

  • Wang C, Wu Y, Jiang J, Zhang S, Li Z, Zheng X, Hao J (2013) Impacts of load mass on real-world PM1 mass and number emissions from a heavy-duty diesel bus. Int J Environ Sci Technol 12:1261–1268

    Article  CAS  Google Scholar 

  • Xu X (2001) Dielectric barrier discharge—properties and applications. Thin Solid Films 390:237–242

    Article  CAS  Google Scholar 

  • Yao S, Fushimi C, Madokoro K, Yamada K (2006) Uneven dielectric barrier discharge reactors for diesel particulate matter removal. Plasma Chem Plasma Process 26:481–493

    Article  CAS  Google Scholar 

  • Ye D, Gao D, Yu G, Shen X, Gu F (2005) An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma. J Hazard Mater 127:149–155

    Article  CAS  Google Scholar 

  • Yoshida K, Yamamoto T, Kuroki T, Okubo M (2009) Pilot-scale experiment for simultaneous dioxin and NOx removal from garbage incinerator emissions using the pulse corona induced plasma chemical process. Plasma Chem Plasma Process 29:373–386

    Article  CAS  Google Scholar 

  • Zhang X, Feng W, Yu Z, Li S, Zhu J, Yan K (2013) Comparison of styrene removal in air by positive and negative DC corona discharges. Int J Environ Sci Technol 10:1377–1382

    Article  CAS  Google Scholar 

  • Zhu T, Li J, Jin Y, Liang Y, Ma G (2009) Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. Int J Environ Sci Technol 6:141–148

    Article  CAS  Google Scholar 

  • Zhu T, Wan Y, Li J, He X, Xu D, Shu X, Liang W, Jin Y (2011) Volatile organic compounds decomposition using nonthermal plasma coupled with a combination of catalysts. Int J Environ Sci Technol 8:621–630

    Article  CAS  Google Scholar 

  • Zhua L, Yu J, Wang X (2007) Oxidation treatment of diesel soot particulate on CexZr1 − xO2. J Hazard Mater 140:205–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Queensland Program for Japanese Education Postgraduate Research Grants is gratefully acknowledged. The authors would like to extend their appreciation to the members of the host University for their assistance during the experiments. Furthermore, the support of the Department of Mechanical System Engineering of the host institute is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Babaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaie, M., Kishi, T., Arai, M. et al. Influence of non-thermal plasma after-treatment technology on diesel engine particulate matter composition and NOx concentration. Int. J. Environ. Sci. Technol. 13, 221–230 (2016). https://doi.org/10.1007/s13762-015-0865-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0865-3

Keywords

Navigation