Skip to main content
Log in

Total Diesel Emission Control Technology Using Ozone Injection and Plasma Desorption

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

An innovative total diesel emission control system for diesel particulate and NOx simultaneous reduction is proposed. In this system, the plasma reactor is located outside the emission exhaust pipe and activated gas induced from ozone activated by the plasma is injected into the exhaust pipe. On the other hand, the NOx reduction is achieved using oxygen-poor nonthermal plasma desorption. The concentration of oxygen can be changed either by controlling the incineration state of the engine or by injecting oxygen-poor gas. Experiments are carried out for the emission of small diesel engine generator and high performance is demonstrated. The effective or apparent required plasma energy can be decreased further using this system because of the periodic or intermittent application of the plasma. In the present study, the excellent reduction energy efficiencies of 6.6 g/kWh for PM and 16 g (NO2)/kWh for NOx are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kajiwara N (ed) (2001) Particle removal technologies of diesel car exhaust gas. CMC Books Corp., pp 203 (in Japanese)

  2. Cooper BJ, Thoss JE (1989) Role of NO in diesel particulate emission control. SAE Paper, No. 89040

  3. Koebel M, Elsener M, Krocher O, Schar C, Rothlisberger R, Jaussi F, Mangold M (2004) NOx reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR. Topics Catal 30/31(1–4):43–48

    Article  Google Scholar 

  4. Matsumoto S (2000) Catalytic reduction of nitrogen oxides. Cattech 4(2):2–9

    Article  Google Scholar 

  5. Suzuki J, Matsumoto S (2004) Development of catalysts for diesel particulate NOx reduction. Topics Catal 28(1–4):171–176

    Article  Google Scholar 

  6. Yamazaki K, Suzuki T, Takahashi N, Yokota K, Sugiura M (2001) Effect of the addition of transition metals to Pt/Ba/Al2O3 catalyst on the NOx storage-reduction catalysis under oxidizing conditions in the presence of SO2. Appl Catal B-Environ 30(3–4):459–468

    Article  Google Scholar 

  7. Otsubo Y, Matsuoka H, Masuda M, Teraoka K, Aiba T (2004) Application of simultaneous reduction system of NOx and particulate matter to diesel engine for passenger cars. In: Proceedings of 2004 JSAE annual congress, Yokohama, Japan, 20 May 2004, No.28-04, pp 21–24

  8. Grundmann J, Müller S, Zahn RJ (2005) Treatment of soot by dielectric barrier discharges and ozone. Plasma Chem Plasma Process 25(5):455–466

    Article  Google Scholar 

  9. Mok YS, Huh YJ (2005) Simultaneous removal of nitrogen oxides and particulate matters from diesel engine exhaust using dielectric barrier discharge and catalysis hybrid system. Plasma Chem Plasma Process 25(6):625–639

    Article  Google Scholar 

  10. Kupe J, Goulette D, Hemingway M, Slivis T, Fisher G, DiMaggio C, Herling D, Lessor D, Baskaran S, Frye J, Smith M (2000) Non-thermal plasma approach to simultaneous removal of NOx & particulate matter. Presented at Diesel engine emission reduction 2000 workshop, SanDiego, CA, 20–24 August 2000 (This paper is available in the website of U.S. Department of Energy, Office of Scientific and Technical Information, FreedomCAR & Vehicle Technologies, http://www.osti.gov/fcvt/)

  11. Kupe J, Bonadies J, Goulette D, Hemingway M, Silvis T, Fisher G, Herling D, Lessor D, Gerber M, Frye J, Smith M, Wiens J, Yowell G (2001) Delphi enhanced NTP emission solution tested on light-duty vehicle. Presented at Diesel engine emission reduction 2001 workshop, Portsmouth, Virginia, 5–9 August 2001 (This paper is available in the website of U.S. Department of Energy, Office of Scientific and Technical Information, FreedomCAR & Vehicle Technologies, http://www.osti.gov/fcvt/)

  12. Okubo M, Yamamoto T (2002) Recent studies on regeneration of DPF using nonthermal plasma. J Inst Electrostat Jpn 26(6):254–255 (in Japanese)

    Google Scholar 

  13. Okubo M, Miwa S, Kuroki T, Yamamoto T (2003) Low temperature soot incineration of diesel particulate filter using honeycomb nonthermal plasma. Trans Jpn Soc Mech Eng 69B(688):2719–2724 (in Japanese)

    Google Scholar 

  14. Yamamoto T, Okubo M, Kuroki T, Miyairi Y (2003) Nonthermal plasma regeneration of diesel particulate filter. SAE paper, No. 2003-01-1182, presented at 2003 SAE world congress, Detroit, Michigan, 3–6 March 2003, 8 pp

  15. Okubo M, Kuroki T, Yamamoto T, Miwa S (2003) Soot incineration of diesel particulate filter using honeycomb nonthermal plasma. SAE paper, No. 2003-01-1886, JSAE 20030309, presented at JSAE/SAE international spring fuels & lubricants meeting, Yokohama, Japan, 19–22 May 2003, 7 pp

  16. Okubo M, Miyashita T, Kuroki T, Miwa S, Yamamoto T (2004) Regeneration of diesel particulate filter using nonthermal plasma without catalyst. IEEE Trans Ind Appl 40(6):1451–1458

    Article  Google Scholar 

  17. Okubo M, Kuroki T, Miyairi Y, Yamamoto T (2004) Low temperature soot incineration of diesel particulate filter using remote nonthermal plasma induced by a pulsed barrier discharge. IEEE Trans Ind Appl 40(6):1504–1512

    Article  Google Scholar 

  18. Okubo M, Yamamoto T, Miwa S (2002) Exhaust gas cleaning system. Japanese patent pending, No. 2002-227920, 5 August 2002; PCT international patent pending, PCT/JP2003/09607, 29 July 2003

  19. Okubo M, Yamamoto T, Miwa S, Miyairi Y (2003) Exhaust gas cleaning system. Japanese patent pending, No. 2003-34151, 12 February 2003

  20. Dorai R, Kushner MJ (2000) Consequences of propene and propane on plasma remediation of NOx. J Appl Phys 88(6):3739–3747

    Article  ADS  Google Scholar 

  21. Hoard JW, Tonkyn RG (2003) Two-stage plasma-catalysis for diesel NOx emission control. J Adv Oxid Tech 6(2):158–165

    Google Scholar 

  22. Miessner H, Francke KP, Rudolph R, Hammer T (2002) NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction. Catal Today 75(1–4):325–330

    Article  Google Scholar 

  23. Higashi M, Uchida S, Suzuki N, Fujii K (1992) Soot elimination and NOx and SOx reduction in diesel-engine exhaust by a combustion of discharge plasma and oil dynamics. IEEE Trans Plasma Sci 20(1):1–12

    Article  ADS  Google Scholar 

  24. Fujii K (1998) Plasma treatment of the exhaust gas from vehicles. J Plasma Fusion Res 74(2):151–154 (in Japanese)

    Google Scholar 

  25. Yoshioka Y, Yukitake T, Nakai M, Souma K, Tuchiya K, Annou K, Hori Y (1998) Design and testing of a prototype De-NOx system for 100 kVA diesel engine generator using a silent discharge reactor. Combus Sci Technol 133(1–3):13–29

    Article  Google Scholar 

  26. Park JY, Tomicic I, Round GF, Chang JS (1999) Simultaneous removal of NOx and SO2 from NO-SO2-CO2-N2-O2 gas mixtures by corona radical shower systems. J Phys D: Appl Phys 32(9):1006–1011

    Article  ADS  Google Scholar 

  27. Gal A, Kurahashi M, Kuzumoto M (1999) An energy-consumption and byproduct-generation analysis of the discharge nonthermal plasma-chemical NO-reduction process. J Phys D: Appl Phys 32:1–6

    Article  Google Scholar 

  28. Mizuno A, Shimizu K, Yanagihara K, Kinoshita K, Tsunoda K, Kim HH, Katsura S (1996) Effect of additives and catalysts on removal of nitrogen oxides using pulsed discharge. In: Proceedings of 1996 IEEE-IAS annual meeting, San Diego, CA, vol 3, pp 1808–1812

  29. Oda T, Kato T, Takahashi T, Shimizu K (1998) Nitric oxide decomposition in air by using non-thermal plasma processing with additives and catalyst. IEEE Trans Ind Appl 34(2):268–272

    Article  Google Scholar 

  30. Urashima K, Chang JS, Park JY, Lee DC, Chakrabarti A, Ito T (1998) Reduction of NOx from natural gas combustion flue gases by corona discharge radical injection techniques (thermal power plant emissions control). IEEE Trans Ind Appl 34(5):934–939

    Article  Google Scholar 

  31. Kanazawa S, Chang JS, Round GF, Sheng G, Ohkubo T, Nomoto Y, Adachi T (1998) Reduction of NOx from flue gas by corona discharge activated ammonia radical showers. Combus Sci Technol 133(1–3):93–105

    Article  Google Scholar 

  32. Li R, Liu X (2000) Main fundamental gas reactions in denitrification and desulfurization from flue gas by non-thermal plasmas. Chem Eng Sci 55(13):2491–2506

    Article  Google Scholar 

  33. Hoard J, Laing P, Balmer ML, Tonkyn R (2000) Comparison of plasma-catalyst and lean NOx catalyst for diesel NOx reduction. SAE paper, No. 2000-01-2895, presented at International fuels & lubricants meeting & exposition, October 2000, Baltimore, MD, USA

  34. Takaki K, Fujiwara T (2001) Multipoint barrier discharge process for removal of NOx from diesel engine exhaust. IEEE Trans Plasma Sci 29(3):518–523

    Article  ADS  Google Scholar 

  35. Locke BR, Ichihashi A, Kim HH, Mizuno A (2001) Diesel engine exhaust treatment with a pulsed streamer corona reactor equipped with reticulated vitreous carbon electrodes. IEEE Trans Ind Appl 37(3):715–723

    Article  Google Scholar 

  36. Chang JS (2001) Recent development of plasma pollution control technology: a critical review. Sci Tech Adv Mater 2(3–4):571–576

    Article  Google Scholar 

  37. Hackam R, Akiyama H (2000) Air pollution control by electrical discharges. IEEE Trans Dielect Electr Insul 7(5):654–683

    Article  Google Scholar 

  38. Yamamoto T, Yang CL, Kravets Z, Beltran M (2000) Plasma-assisted chemical processes for NOx control. IEEE Trans Ind Appl 36(3):923–929

    Article  Google Scholar 

  39. Yamamoto T, Okubo M, Hayakawa K, Kitaura K (2001) Towards ideal NOx control technology using plasma-chemical hybrid process. IEEE Trans Ind Appl 37(5):1492–1498

    Article  Google Scholar 

  40. Yamamoto T, Okubo M, Miyashita T, Kitaura K (2001) NOx removal in diesel engine exhaust using nonequilibrium plasma and chemical process. Trans Jpn Soc Mech Eng 67B(663):2891–2897 (in Japanese)

    Google Scholar 

  41. Kuroki T, Takahashi M, Okubo M, Yamamoto T (2002) Single-stage plasma-chemical process for particulates, NOx and SOx simultaneous removal. IEEE Trans Ind Appl 38(5):1204–1209

    Article  Google Scholar 

  42. Yamamoto T, Okubo M, Nagaoka T, Hayakawa K (2002) Simultaneous removal of NOx and SOx, CO2 at elevated temperature using a plasma-chemical hybrid process. IEEE Trans Ind Appl 38(5):1168–1173

    Article  Google Scholar 

  43. Yamamoto T, Rajanikanth BS, Okubo M, Kuroki T, Nishino M (2003) Performance evaluation of nonthermal plasma reactors for NO oxidation in diesel engine exhaust gas treatment. IEEE Trans Ind Appl 39(6):1608–1613

    Article  Google Scholar 

  44. Okubo M, Inoue M, Kuroki T, Yamamoto T (2005) NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption. IEEE Trans Ind Appl 41(4):891–899

    Article  Google Scholar 

  45. Yamamoto T, Yang CL (1998) Plasma desorption and decomposition. In: Proceedings of the IEEE-IAS annual meeting, Saint Louis MO, 12–16 October 1998, pp 1877–1883

  46. Ogata A, Ito D, Mizuno K, Kushiyama S, Yamamoto T (1999) Removal of dilute benzene using zeolite-hybrid plasma reactor. In: Proceedings of the 1999 IEEE industry applications conference, Phoenix AZ, 3–7 October 1999, pp 1467–1472

  47. Yamamoto T, Okubo M, Fujimoto M (2000) Desorption and regeneration of NO using non-equilibrium plasma. J Inst Electrostat Jpn 24(3):161–162 (in Japanese)

    Google Scholar 

  48. Okubo M, Tanioka G, Kuroki T, Yamamoto T (2002) NOx concentration using adsorption and nonthermal plasma desorption. IEEE Trans Ind Appl 38(5):1196–1203

    Article  Google Scholar 

  49. Okubo M, Zhang SG, Yamamoto T, Kuroki T, Tabata H (2004) Exhaust gas cleaning system, method and their control method. Japanese patent pending, No. 2004-324213, 8 November 2004

  50. Okubo M, Yamamoto T, Kuroki T (2003) Exhaust gas cleaning method and system. Japanese patent pending, No. 2003-361010, 21 October 21 2003; PCT International Patent Pending, PCT/JP2004/1014737, October 2004

  51. Simachev VYu, Novoselov SS, Svetlichnyi VA, Gavrilov AF, Gorokhov MV, Semenov VI, Ryzhikov VA, Demchuk VV (1988) An investigation of the ozone-ammonia method of simultaneous desulphurisation and denitrification of flue gases when burning Donetsk coals. Therm Eng 35(3):67–70

    Google Scholar 

  52. Novoselov SS, Gavrilov AF, Simachev VYu, Svetlichnyi VA (1986) Ozone method of SO2 and NO2 from the flue gas of thermal power stations. Therm Eng 33:496–499

    Google Scholar 

  53. Yoshioka Y, Sano K, Teshima K (2003) NOx removal from diesel engine exhaust by ozone injection method. J Adv Oxid Technol 6(2):143–149

    Google Scholar 

  54. Oda T, Takahashi T, Yamaji K (2004) TCE decomposition by the non-thermal plasma process concerning ozone effect. IEEE Trans Ind Appl 40(5):1249–1256

    Article  Google Scholar 

  55. Okubo M, Kuroki T, Kametaka H, Yamamoto T (2001) Odor control using the ac barrier-type plasma reactors. IEEE Trans Ind Appl 37(5):1447–1455

    Article  Google Scholar 

  56. Okubo M, Yamamoto T, Kuroki T, Fukumoto H (2001) Electronic air cleaner composed of nonthermal plasma reactor and electrostatic precipitator. IEEE Trans Ind Appl 37(5):1505–1511

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly thank Mr. Hideaki Kuramochi (A student of Osaka Prefecture University) and Mr. Takenori Osanai (Oden Co., LTD) for their supports and discussions in this study. This work was partially supported by Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science, Oden Co., LTD., and other several Japanese companies manufacturing diesel engines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, M., Arita, N., Kuroki, T. et al. Total Diesel Emission Control Technology Using Ozone Injection and Plasma Desorption. Plasma Chem Plasma Process 28, 173–187 (2008). https://doi.org/10.1007/s11090-008-9121-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9121-7

Keywords

Navigation