Skip to main content
Log in

Fluorescence sensing of picric acid by ceria nanostructures prepared using fenugreek extract

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Easy and fast detection of aquatic pollutants is highly desirable to avoid water contamination. This work is focused on the fluorescence detection of picric acid in water using sol–gel ceria nanoparticles synthesized in the presence of fenugreek extract. The nanostructure and material morphology of cubic phase fluorite ceria are analyzed using X-ray diffraction, Fourier Transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Optical studies indicated its strong absorbance and intense photoluminescence emission. Sensing of picric acid is performed here by investigating the fluorescence quenching of the nanoparticle dispersion. Ceria showed a linear concentration range of 0.33–41.6 µM with a lower detection limit of 0.33 µM picric acid. The strong binding interaction between the nanoceria and picric acid is indicated from the high Stern–Volmer constant. The CeO2 nanoparticles are selective to picric acid with other phenolic compounds and also found to be sensitive to picric acid in real water samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.V. Goodpaster, V.L. McGuffin, Fluorescence quenching as an indirect detection method for nitrated explosives. Anal. Chem. 73, 2004–2011 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. I.M. Alaoui, Applications of luminescence to fingerprints and trace explosives detection, in Unexploded ordnance detection and mitigation. ed. by J. Byrnes (Springer Netherlands, 2009), pp. 189–196

    Chapter  Google Scholar 

  3. M.S. Meaney, V.L. McGuffin, Luminescence-based methods for sensing and detection of explosives. Anal BioanalChem 391, 2557–2576 (2008)

    Article  CAS  Google Scholar 

  4. S.J. Toal, W.C. Trogler, Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 16, 2871–2883 (2006)

    Article  CAS  Google Scholar 

  5. S.S. Nagarkar, B. Joarder, A.K. Chaudhari, S. Mukherjee, S.K. Ghosh, Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem. Int. Ed. 52, 2881–2885 (2013)

    Article  CAS  Google Scholar 

  6. T. Naddo, X. Yang, J.S. Moore, L. Zang, Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film. Sens. Actuators B 134, 287–291 (2008)

    Article  CAS  Google Scholar 

  7. Y. Hu, M. Ding, X.Q. Liu, L.B. Sun, H.L. Jiang, Rational synthesis of an exceptionally stable Zn(II) metal–organic framework for the highly selective and sensitive detection of picric acid. Chem. Commun. 52, 5734–5737 (2016)

    Article  CAS  Google Scholar 

  8. R. Kumar, A. Umar, D.S. Rana, P. Sharma, M.S. Chauhan, S. Chauhan, Fe-doped ZnOnanoellipsoids for enhanced photocatalytic and highly sensitive and selective picric acid sensor. Mater. Res. Bull. 102, 282–288 (2018)

    Article  CAS  Google Scholar 

  9. Urbanski T. Chemistry and Technology of Explosives. V. 1. Pergamon Press, 1964.

  10. Q. J. Zhao, Provisional peer-reviewed toxicity values for picric acid (CASRN 88-89-1) and ammonium picrate (CASRN 131-74-8), EPA/690/R-20/008F | September 2020 | FINAL

  11. G. Sivaraman, B. Vidya, D. Chellappa, Rhodamine based selective turn-on sensing of picric acid. RSC Adv. 4, 30828–30831 (2014)

    Article  CAS  Google Scholar 

  12. S. Sanda, S. Parshamoni, S. Biswas, S. Konar, Highly selective detection of Palladium and Picric acid by a Luminescent MOF: a dual functional fluorescent sensor. Chem. Commun. 51, 6576–6579 (2015)

    Article  CAS  Google Scholar 

  13. R. Kumar, S. Sandhu, P. Singh, G. Hundal, M.S. Hundal, S. Kumar, Tripodal fluorescent sensor for encapsulation-based detection of picric acid in water. Asian J. Org. Chem. 3, 805–813 (2014)

    Article  CAS  Google Scholar 

  14. D.C. Santra, M.K. Bera, P.K. Sukul, S. Malik, Charge-transfer-induced fluorescence quenching of anthracene derivatives and selective detection of picric acid. Chem. Eur. J. 22, 2012–2019 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. V. Bhalla, A. Gupta, M. Kumar, Fluorescent nanoaggregates of pentacenequinone derivative for selective sensing of picric acid in aqueous media. Org. Lett. 14, 3112–3115 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. B. Roy, A.K. Bar, B. Gole, P.S. Mukherjee, Fluorescent tris-imidazolium sensors for picric acid explosive. J. Org. Chem. 78, 1306–1310 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. J. Huang, L. Wang, C. Shi, Y. Dai, C. Gua, J. Liu, Selective detection of picric acid using functionalized reduced graphene oxide sensor device. Sens. Actuators B Chem. 196, 567–573 (2014)

    Article  CAS  Google Scholar 

  18. J. Li, L. Zhang, P. Li, Y. Zhang, C. Dong, One step hydrothermal synthesis of carbon nanodots to realize the fluorescence detection of picric acid in real samples. Sens. Actuators B Chem. 258, 580–588 (2018)

    Article  CAS  Google Scholar 

  19. Z.M.S.H. Khan, S. Saifi, Shumaila, Z. Aslam, S.A. Khan, M. Zulfequar, A facile one step hydrothermal synthesis of carbon quantum dots for label -free fluorescence sensing approach to detect picric acid in aqueous solution. J. Photochem. Photobiol A 388, 112201 (2020)

    Article  Google Scholar 

  20. S. Kaja, D.P. Damera, A. Nag, A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium. Anal. Chim. Acta. 1129, 12–23 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. H.K. Sadhanala, K.K. Nanda, Boron and nitrogen co-doped carbon nanoparticles as photoluminescent probes for selective and sensitive detection of picric acid. J. Phys. Chem. C 119, 13138–13143 (2015)

    Article  CAS  Google Scholar 

  22. K. Negi, D.S. Rana, M. Kumar, P. Sharma, R. Kumar, A. Umar, S. Chauhan, M.S. Chauhan, Iron oxide nanoparticles as potential scaffold for photocatalytic and sensing applications. J. Nanosci. Nanotechnol. 19, 2695–2701 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. N.A.M. Fadzil, M.H.A.B. Rahim, G.P. Maniam, Brief review of ceria and modified ceria: synthesis and application. Mater. Res. Express. 5, 085019 (2018)

    Article  Google Scholar 

  24. M. Darroudi, S.J. Hoseini, R.K. Oskuee, H.A. Hosseini, L. Gholami, S. Gerayli, Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram. Int. 40, 7425–7430 (2014)

    Article  CAS  Google Scholar 

  25. R. Schmitt, A. Nenning, O. Kraynis, R. Korobko, A.I. Frenkel, I. Lubomirsky, S.M. Hailef, J.L.M. Rupp, A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 49, 554–592 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. N. Shehata, K. Meehan, M. Hudait, N. Jain, Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element. J Nanopart Res 14, 1173 (2012)

    Article  Google Scholar 

  27. K. Negi, M. Kumar, G. Singh, S. Chauhan, M.S. Chauhan, Nanostructured CeO2 for selective-sensing and smart photocatalytic applications. Ceram. Int. 44, 15281–15289 (2018)

    Article  CAS  Google Scholar 

  28. B. Elahi, M. Mirzaee, M. Darroudi, R.K. Oskuee, K. Sadrib, M.S. Amiri, Preparation of cerium oxide nanoparticles in Salvia MacrosiphonBoiss seeds extract and investigation of their photo-catalytic activities. Ceram. Int. 45, 4790–4797 (2019)

    Article  CAS  Google Scholar 

  29. T. Arunachalam, M. Karpagasundaram, N. Rajarathinam, Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopisjuliflora leaf extract and their structural, optical and antibacterial properties. Mater Sci-Poland 35, 791–798 (2017)

    Article  CAS  Google Scholar 

  30. Y. Yulizar, E. Kusrini, D.O.B. Apriandanu, N. Nurdini, L. Daturametel, Leaves extract mediated CeO2 nanoparticles: synthesis, characterizations, and degradation activity of DPPH radical. Surf. Interfaces. 19, 100437 (2020)

    Article  CAS  Google Scholar 

  31. Q. Maqbool, M. Nazar, S. Naz, T. Hussain, N. Jabeen, R. Kausar, S. Anwaar, F. Abbas, T. Jan, Antimicrobial potential of green synthesized CeO2 nanoparticles from Oleaeuropaea leaf extract. Int. J. Nanomed. 11, 5015–5025 (2016)

    Article  CAS  Google Scholar 

  32. A. Arumugam, C. Karthikeyan, A.S.H. Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosasuperba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C. 49, 408–415 (2015)

    Article  CAS  Google Scholar 

  33. D. Dutta, R. Mukherjee, M. Patra, M. Banik, R. Dasgupta, M. Mukherjee, T. Basu, Green synthesized cerium oxide nanoparticle: a prospective drug against oxidative harm. Colloid Surf. B 147, 45–53 (2016)

    Article  CAS  Google Scholar 

  34. G.S. Priya, A. Kanneganti, K.A. Kumar, K.V. Rao, S. Bykkam, Bio Synthesis of cerium oxide nanoparticles using aloe barbadensis miller gel. Int. J. Sci. Res. 4, 2250–3153 (2014)

    Google Scholar 

  35. S.K. Kannan, M. Sundrarajan, A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int. J. Nanosci 13, 1450018 (2014)

    Article  CAS  Google Scholar 

  36. S.A. Nezhad, A. Es-haghi, M.H. Tabrizi, Green synthesis of cerium oxide nanoparticle using Origanummajorana L. leaf extract, its characterization and biological activities. ApplOrganometal Chem. 34, 5314 (2020)

    Google Scholar 

  37. R.P. Senthilkumar, V. Bhuvaneshwari, R. Ranjithkumar, S. Sathiyavimal, V. Malayaman, B. Chandarshekar, Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles- as a bionanomaterials. Int. J. Biol. Macromol. 104, 1746–1752 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. J.K. Sharma, P. Srivastava, S. Ameen, M.S. Akhtar, S.K. Sengupta, G. Singh, Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. MRB. 91, 98–107 (2017)

    CAS  Google Scholar 

  39. G. Sharmila, C. Muthukumaran, H. Saraswathi, E. Sangeetha, S. Soundarya, N.M. Kumar, Green synthesis, characterization and biological activities of nanoceria. Ceram. Inter. 45, 12382–12386 (2019)

    Article  CAS  Google Scholar 

  40. N. Thovhogi, A. Diallo, A. Gurib-Fakim, M. Maaza, Nanoparticles green synthesis by HibiscusSabdariffa flower extract: Main physical properties. J. Alloys Compd. 647, 392–396 (2015)

    Article  CAS  Google Scholar 

  41. S.B. Bukhari, M.I. Bhanger, S. Memon, Antioxidative activity of extracts from a fenugreek seeds (Trigonellafoenum-graecum). Pak. J. Anal. Environ. Chem. 40, 78–83 (2008)

    Google Scholar 

  42. I.M.A.A.L. Mashkor, Phenolic content and antioxidant activity of fenugreek seeds extract. Int. J. Pharmacogn. 6, 841–844 (2014)

    Google Scholar 

  43. L.J. Xu, J.L. Wang, Degradation of chlorophenols using a novel Fe0/CeO2 composite. Appl. Catal. 142–143, 396–405 (2013)

    Article  Google Scholar 

  44. A.A. Alshehri, M.A. Malik, Biogenic fabrication of ZnO nanoparticles using Trigonellafoenum-graecum (Fenugreek) for profcientphotocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 30, 16156–16173 (2019)

    Article  CAS  Google Scholar 

  45. S. Seetharaman, H. Balya, G. Kuppusamy, Preparation and evaluation of cefixime nanoparticles prepared using fenugreek seed mucilage and chitosan as natural polymers. IJPCR 8, 179–188 (2016)

    Google Scholar 

  46. A. Miri, M. Sarani, Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram. Inter. 44, 11923–13456 (2018)

    Article  Google Scholar 

  47. T.V. Surendra, S.M. Roopa, Photocatalytic and antibacterial properties of phytosynthesized of CeO2 NPs using Moringaoleifera peel extract. J Photochem. Photobiol. B. 161, 122–128 (2016)

    Article  CAS  PubMed  Google Scholar 

  48. V. Ramasamy, G. Vijayalakshmi, Synthesis, characterization and tuning of visible region absorption ability of cadmium doped ceria quantum dots. J Mater Sci: Mater Electron. 27, 4723–4735 (2016)

    CAS  Google Scholar 

  49. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Cryst. Growth Des. 7, 950–955 (2007)

    Article  CAS  Google Scholar 

  50. N.S. Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, P. Meena, Y. Masuda, Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods. J Sol-Gel Sci. Technol. 64, 515–523 (2012)

    Article  CAS  Google Scholar 

  51. M.J. Muñoz-Batista, M. De Los, M. Ballari, A. Kubacka, A.E. Cassano, O.M. Alfano, M. Fernández-García, Acetaldehyde degradation under UV and visible irradiation using CeO2-TiO2 composite systems: evaluation of the photocatalytic efficiencies. Chem. Eng. J. 255, 297–306 (2014)

    Article  Google Scholar 

  52. M.A.M. Khan, W. Khan, M. Ahamed, A.N. Alhaza, Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 nanocrystals. Sci. Rep. 7, 12560 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  53. A. Aranda, E. Aylon, B. Solsona, R. Murillo, A.M. Mastral, D.R. Sellick, S. Agouram, T. Garcıa, S.H. Taylor, High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chem. Commun. 48, 4704–4706 (2012)

    Article  CAS  Google Scholar 

  54. A. Aboukaïs, M. Skaf, S. Hany, R. Cousin, S. Aouad, M. Labaki, E.A. Aad, A comparative study of Cu, Ag and Au doped CeO2 in the total oxidation of volatile organic compounds (VOCs). Mater. Chem. Phys. 177, 570–576 (2016)

    Article  Google Scholar 

  55. R.R. Muthuchudarkodi, A. Ashli, Green synthesis of undoped and Ti DOPED CeO2 nanoparticles by the fruit extract of emblicaofficinalis and its photocatalytic activity. Int. J. Chem. Concepts 3, 293–299 (2017)

    CAS  Google Scholar 

  56. R. Udayabhaskar, S.F. Sahlevania, T. Prabhakaran, T. Pandiyarajan, B. Karthikeyan, D. Contreras, R.V. Mangalaraja, Modulation of optical and photocatalytic properties by morphology and microstrain in hierarchical ceria nanostructures. Sol. Energy Mater. Sol. 195, 106–113 (2019)

    Article  CAS  Google Scholar 

  57. F. Sotomayor, K.A. Cychosz, M. Thommes, Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc. Mater. Surf. Res. 3, 34–50 (2018)

    Google Scholar 

  58. A.T. Miah, B. Malakar, P. Saikia, Gold over ceria-titania mixed oxides: solar light induced catalytic activity for nitrophenol reduction. Catal. Letters 146, 291–303 (2016)

    Article  CAS  Google Scholar 

  59. G. Grzybek, P. Stelmachowski, S. Gudyka, P. Indyka, Z. Sojka, N.G. Hurtado, V.R. Perez, A.B. Lopez, A. Kotarba, Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: the role of the interface periphery. Appl. Catal. B. 180, 622–629 (2016)

    Article  CAS  Google Scholar 

  60. Y. Zhu, Z. Yang, L. Song, M. Chi, M. Li, C. Wang, X. Lu, Encapsulation of Co3O4 nanoparticles inside CeO2 nanotubes: an efficient biocatalyst for the ultrasensitive detection of ascorbic acid. Part. Part. Syst. Charact. 35, 1800049 (2018)

    Article  Google Scholar 

  61. P.K. Sane, S. Tambat, S. Sontakke, P. Nemade, Visible light removal of reactive dyes using CeO2 synthesized by precipitation. J. Environ. Chem. Eng. 6, 4476–4489 (2018)

    Article  CAS  Google Scholar 

  62. A.S. Tanwar, N. Meher, L.R. Adil, P.K. Iyer, Stepwise elucidation of fluorescence based sensing mechanisms considering picric acid as a model analyte. Analyst. 145, 4753–4767 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge SAIF- STIC CUSAT, Kochi, India for XRD and TEM analyses. CSIF, University of Calicut, is acknowledged for SEM and UV-Vis DRS analyses. IIT Kanpur is acknowledged for XPS analysis and PSG Institute of advanced studies, Coimbatore for Raman analysis. Sree Neelakanta College Pattambi, Palakkad, and the University of Calicut are acknowledged for extending the facilities to carry out the research work. DST, New Delhi, India is acknowledged for instrumental support under the FIST scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Binitha.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interest in this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remani, K.C., Binitha, N.N. Fluorescence sensing of picric acid by ceria nanostructures prepared using fenugreek extract. J IRAN CHEM SOC 19, 619–633 (2022). https://doi.org/10.1007/s13738-021-02327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02327-4

Keywords

Navigation