Skip to main content
Log in

Synthesis, characterization and application of β-cyclodextrin-silica nanocomposite as potential microvessel in nucleophilic substitution reaction of phenacyl halides

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the present study, β-cyclodextrin-silica hybrid is synthesized as a novel, efficient and eco-friendly microvessel and solid–liquid phase-transfer catalyst. This molecular host system was applied for nucleophilic substitution reaction of phenacyl halides in water. No evidence was observed for the formation of by-product for example isothiocyanate or alcohol. Also the products were obtained in pure form without further purification. The structure and morphology of the obtained system were investigated by infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and differential thermal analysis techniques. The surface porosity of the synthesized catalyst was evaluated from the nitrogen adsorption isotherm. All the results provided evidence for incorporation of β-cyclodextrin inside silica pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Graph 1

Similar content being viewed by others

References

  1. Sayari, A., Hamoudi, S.: Periodic mesoporous silica-based organic–inorganic nanocomposite materials. Chem. Mater. 13, 3151–3168 (2001)

    Article  CAS  Google Scholar 

  2. Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res. 45, 3248–3255 (2006)

    Article  CAS  Google Scholar 

  3. Dai, S., Burleigh, M.C., Shin, Y., Morrow, C.C., Barnes, C.E., Xue, Z.: Imprint coating: a novel synthesis of selective functionalized ordered mesoporous sorbents. Angew. Chem. Int. Ed. Engl. 38, 1235–1239 (1999)

    Article  CAS  Google Scholar 

  4. Yoshitake, H., Yokoi, T., Tatsumi, T.: Adsorption behavior of arsenate at transition metal cations captured by amino-functionalized mesoporous silicas. Chem. Mater. 15, 1713–1721 (2003)

    Article  CAS  Google Scholar 

  5. Hoffmann, F., Cornelius, M., Morell, J., Froba, M.: Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. Engl. 45, 3216–3251 (2006)

    Article  CAS  Google Scholar 

  6. Stein, A., Melde, B.J., Schroden, R.C.: Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv. Mater. 12, 1403–1419 (2000)

    Article  CAS  Google Scholar 

  7. Peng, Y., Wang, J., Long, J., Liu, G.: Controllable acid-base bifunctionalized mesoporous silica: highly efficient catalyst for solvent-free Knoevenagel condensation reaction. Catal. Commun. 15, 10–14 (2011)

    Article  CAS  Google Scholar 

  8. Puglisi, A., Annunziata, R., Benaglia, M., Cozzi, F., Gervasini, A., Bertacche, V., Sala, M.C.: Hybrid inorganic-organic materials carrying tertiary amine and thiourea residues tethered on mesoporous silica nanoparticles: synthesis, characterization, and co-operative catalysis. Adv. Synth. Catal. 351, 219–229 (2009)

    Article  CAS  Google Scholar 

  9. Motokura, K., Tada, M., Iwasawa, Y.: Cooperative catalysis of primary and tertiary amines immobilized on oxide surfaces for one-pot C–C bond forming reactions. Angew. Chem. Int. Ed. 47, 9230–9235 (2008)

    Article  CAS  Google Scholar 

  10. Zeidan, R.K., Hwang, S.J., Davis, M.E.: Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew. Chem. Int. Ed. Engl. 45, 6332–6335 (2006)

    Article  CAS  Google Scholar 

  11. Zeidan, R.K., Davis, M.E.: The effect of acid-base pairing on catalysis: an efficient acid-base functionalized catalyst for aldol condensation. J. Catal. 247, 379–382 (2007)

    Article  CAS  Google Scholar 

  12. Margelefsky, E.L., Zeidan, R.K., Dufaud, V., Davis, M.E.: Organized surface functional groups: cooperative catalysis via thiol/sulfonic acid pairing. J. Am. Chem. Soc. 129, 13691–13697 (2007)

    Article  CAS  Google Scholar 

  13. Shylesh, S., Wagener, A., Seifert, A., Ernst, S., Thiel, W.R.: Mesoporous organosilicas with acidic frameworks and basic sites in the pores: an approach to cooperative catalytic reactions. Angew. Chem. Int. Ed. 49, 184–187 (2010)

    Article  CAS  Google Scholar 

  14. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  15. Carvalho, L.B., Pinto, L.: Formation of inclusion complexes and controlled release of atrazine using free or silica-anchored β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. (2012). doi:10.1007/s10847-012-0125-9

    Google Scholar 

  16. Pack, D.W., Hoffman, A.S., Pun, S., Stayton, P.S.: Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4, 581–593 (2005)

    Article  CAS  Google Scholar 

  17. Liu, Y., Chen, Y.: Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 39, 681–691 (2006)

    Article  CAS  Google Scholar 

  18. Villalonga, R., Cao, R., Fragoso, A.: Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088–3116 (2007)

    Article  CAS  Google Scholar 

  19. Calsavara, L., Zanin, G., Moraes, F.D.: Enrofloxacin inclusion complexes with cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. (2011). doi:10.1007/s10847-011-0045-0

    Google Scholar 

  20. Kaboudin, B., Sorbiun, M.: β-Cyclodextrin as an efficient catalyst for the one-pot synthesis of 1-aminophosphonic esters in water. Tetrahedron Lett. 48, 9015–9017 (2007)

    Article  CAS  Google Scholar 

  21. Yang, Z.X., Chen, Y., Liu, Y.: Inclusion complexes of bisphenol A with cyclomaltoheptaose (beta-cyclodextrin): solubilization and structure. Carbohydr. Res. 343, 2439–2442 (2008)

    Article  CAS  Google Scholar 

  22. Lu, Z., Cheng, B., Hu, Y., Zhang, Y., Zou, G.: Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem. 113, 17–20 (2009)

    Article  CAS  Google Scholar 

  23. Murthy, S.N., Madhav, B., Kumar, A.V., Rao, K.R., Nageswar, Y.V.D.: Facile and efficient synthesis of 3,4,5-substituted furan-2(5H)-ones by using β-cyclodextrin as reusable catalyst. Tetrahedron 65, 5251–5256 (2009)

    Article  Google Scholar 

  24. Lee, J.T., Alper, H.: Regioselective hydrogenation of conjugated dienes catalyzed by hydridopentacyanocobaltate anion using beta-cyclodextrin as the phase transfer agent and lanthanide halides as promoters. J. Org. Chem. 55, 1854–1856 (1990)

    Article  CAS  Google Scholar 

  25. Kiasat, A.R., Nazari, S.: Application of β-cyclodextrin-polyurethane as a stationary microvessel and solid–liquid phase-transfer catalyst: preparation of benzyl cyanides and azides in water. Catal. Commun. 18, 102–105 (2012)

    Article  CAS  Google Scholar 

  26. Kiasat, A.R., Nazari, S.: β-Cyclodextrin based polyurethane as eco-friendly polymeric phase transfer catalyst in nucleophilic substitution reactions of benzyl halides in water: an efficient route to synthesis of benzyl thiocyanates and acetates. Catal. Sci. Technol. 2, 1056–1058 (2012)

    Article  CAS  Google Scholar 

  27. Kiasat, A.R., Nazari, S.: β-Cyclodextrin conjugated magnetic nanoparticles as a novel magnetic microvessel and phase transfer catalyst: synthesis and applications in nucleophilic substitution reaction of benzyl halides. J. Incl. Phenom. Macrocycl. Chem. (2012). doi:10.1007/s10847-012-0207-8

    Google Scholar 

  28. Kiasat, A.R., Sayyahi, S.: Immobilization of β-cyclodextrin onto Dowex resin as a stationary microvessel and phase transfer catalyst. Catal. Commun. 11, 484–486 (2010)

    Article  CAS  Google Scholar 

  29. Cundy, C.S., Cox, P.A.: The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103, 663–702 (2003)

    Article  CAS  Google Scholar 

  30. Qin, L., He, X.W., Li, W.Y., Zhang, Y.K.: Molecularly imprinted polymer prepared with bonded β-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. J. Chromatogr. A 1187, 94–102 (2008)

    Article  CAS  Google Scholar 

  31. Vinogradova, E., Estrada, M., Moreno, A.: Colloidal aggregation phenomena: spatial structuring of TEOS-derived silica aerogels. J. Colloid Interface Sci. 298, 209–212 (2006)

    Article  CAS  Google Scholar 

  32. Phanasgaonkar, A., Raja, V.S.: Influence of curing temperature, silica nanoparticles- and cerium on surface morphology and corrosion behaviour of hybrid silane coatings on mild steel. Surf. Coat. Technol. 203, 2260–2271 (2009)

    Article  CAS  Google Scholar 

  33. Iida, S., Togo, H.: Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3. Tetrahedron 63, 8274–8281 (2007)

    Article  CAS  Google Scholar 

  34. Soltani Rad, M.N., Behrouz, S., Khalafi-Nezhad, A.: A simple one-pot procedure for the direct conversion of alcohols into azides using TsIm. Tetrahedron Lett. 48, 3445–3449 (2007)

    Article  CAS  Google Scholar 

  35. Kiasat, A.R., Fallah-Mehrjardi, M.: Polyethylene glycol: a cheap and efficient medium for the thiocyanation of alkyl halides. Bull. Korean Chem. Soc. 29, 2346–2348 (2008)

    Article  CAS  Google Scholar 

  36. Iida, S., Ohmura, R., Togo, H.: Direct oxidative conversion of alkyl halides into nitriles with molecular iodine and 1,3-diiodo-5,5-dimethylhydantoin in aq ammonia. Tetrahedron 65, 6257–6262 (2009)

    Article  CAS  Google Scholar 

  37. Surendra, K., Krishnaveni, N.S., Mahesh, A., Rao, K.R.: Supramolecular catalysis of Strecker reaction in water under neutral conditions in the presence of β-cyclodextrin. J. Org. Chem. 71, 2532–2534 (2006)

    Article  CAS  Google Scholar 

  38. Kiasat, A.R., Fallah-Mehrjardi, M.: PEG-SO3H as eco-friendly polymeric catalyst for regioselective ring opening of epoxides using thiocyanate anion in water: an efficient route to synthesis of β-hydroxy thiocyanate. Catal. Commun. 9, 1497–1500 (2008)

    Article  CAS  Google Scholar 

  39. Kiasat, A.R., Badri, R., Zargar, B., Sayyahi, S.: Poly(ethylene glycol) grafted onto dowex resin: an efficient, recyclable, and mild polymer-supported phase transfer catalyst for the regioselective azidolysis of epoxides in water. J. Org. Chem. 73, 8382–8385 (2008)

    Article  CAS  Google Scholar 

  40. Kiasat, A.R., Sayyahi, S.: A simple and rapid protocol for the synthesis of phenacyl derivatives using macroporous polymer-supported reagents. Mol. Divers. 14, 155–158 (2010)

    Article  CAS  Google Scholar 

  41. Kiasat, A.R., Zayadi, M.: Polyethylene glycol immobilized on silica gel as a new solid–liquid phase-transfer catalyst for regioselective azidolysis of epoxides in water: an efficient route to 1,2-azido alcohols. Catal. Commun. 9, 2063–2067 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Research Council of Shahid Chamran University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Kiasat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiasat, A.R., Nazari, S. Synthesis, characterization and application of β-cyclodextrin-silica nanocomposite as potential microvessel in nucleophilic substitution reaction of phenacyl halides. J Incl Phenom Macrocycl Chem 77, 429–438 (2013). https://doi.org/10.1007/s10847-012-0263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0263-0

Keywords

Navigation