Skip to main content
Log in

Ultrasensitive direct determination of BTEX in polluted soils using a simple and novel pressure-controlled solid-phase microextraction setup

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A pressure-controlled headspace solid-phase microextraction (PC-HS-SPME) setup was developed, by reconsidering the strengths and weaknesses points of the similar reported systems. The new setup was coupled with gas chromatography–flame ionization detection (GC–FID) for direct analysis of benzene, toluene, ethylbenzene and xylene (BTEX) in contaminated soils, without any sample preparation step. The important experimental factors, affecting the performance of the method, including volumes of extraction and vacuum vials, type of SPME fiber, extraction time and temperature, moisture content of the sample, and sonication time were studied and optimized. Under the optimal conditions, good linearity of the calibration curves (R2 > 0.997) was obtained in the concentration range of 0.1–20,000 ng g−1. The limits of detections were found to be 0.001–0.08 ng g−1. The relative standard deviations, for six repetitive analyses of 100 ng g−1 BTEX, were obtained to be 5.7–12.3%. The PC-HS-SPME–GC–FID procedure was successfully applied for the extraction and determination of BTEX in the polluted soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Chemat, M.A. Vian, G. Cravotto, Green extraction of natural products: concept and principles. Int. J. Mol. Sci. 13, 8615–8627 (2012). https://doi.org/10.3390/ijms13078615

    Article  CAS  Google Scholar 

  2. X. Hu, J. Li, Q. Chen, Z. Lin, D. Yin, Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: evaluated with negligible depletion solid-phase microextraction. Sci. Total Environ. 493, 12–21 (2014). https://doi.org/10.1016/j.scitotenv.2014.05.107

    Article  CAS  Google Scholar 

  3. R.P. Belardi, J.B. Pawliszyn, The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Qual. Res. J. Can. 24, 179–191 (1989)

    CAS  Google Scholar 

  4. A.R. Ghiasvand, L. Setkova, J. Pawliszyn, Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME-GC-TOF-MS. Flav. Frag. J. 22, 377–391 (2007). https://doi.org/10.1002/ffj.1809

    Article  CAS  Google Scholar 

  5. W. Wardencki, M. Michulec, J. Curyło, A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int. J. Food Sci. Technol. 39, 703–717 (2004). https://doi.org/10.1111/j.1365-2621.2004.00839.x

    Article  CAS  Google Scholar 

  6. J. Zeng, J. Chen, X. Song, Y. Wang, J. Ha, X. Chen, X. Wang, An electrochemically enhanced solid-phase microextraction approach based on a multi-walled carbon nanotubes/Nafion composite coating. J. Chromatogr. A 1217, 1735–1741 (2010). https://doi.org/10.1016/j.aca.2012.03.054

    Article  CAS  Google Scholar 

  7. P.-C. Hsieh, C.-L. Lee, J.-F. Jen, K.-C. Chang, Complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction in determining the binding constants of hydrophobic organic pollutants to dissolved humic substances. Analyst 140, 1275–1280 (2015). https://doi.org/10.1039/C4AN01923G

    Article  CAS  Google Scholar 

  8. A. Ghiasvand, S. Shadabi, S. Hajipour, A. Nasirian, M. Borzouei, E. Hassani-Moghadam, P. Hashemi, Comparison of ultrasound-assisted headspace solid-phase microextraction and hydrodistillation for the identification of major constituents in two species of Hypericum. J. Chromatogr. Sci. 54, 264–270 (2016). https://doi.org/10.1093/chromsci/bmv136

    CAS  Google Scholar 

  9. Y. Xu, W. Fan, M.C. Qian, Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. J. Agric. Food Chem. 55, 3051–3057 (2007). https://doi.org/10.1021/jf0631732

    Article  CAS  Google Scholar 

  10. C.L. Rainey, D.E. Bors, J.V. Goodpaster, Design and optimization of a total vaporization technique coupled to solid-phase microextraction. Anal. Chem. 86, 11319–11325 (2014). https://doi.org/10.1021/ac5030528

    Article  CAS  Google Scholar 

  11. E. Boyac, J. Pawliszyn, Micelle assisted thin-film solid phase microextraction: a new approach for determination of quaternary ammonium compounds in environmental samples. Anal. Chem. 86, 8916–8921 (2014). https://doi.org/10.1021/ac5015673

    Article  Google Scholar 

  12. A.R. Fakhari, A. Sahragard, H. Ahmar, H. Tabani, A novel platform sensing based on combination of electromembrane-assisted solid phase microextraction with linear sweep voltammetry for the determination of tramadol. J. Electroanal. Chem. 747, 12–19 (2015). https://doi.org/10.1016/j.jelechem.2015.01.032

    Article  CAS  Google Scholar 

  13. C.-H. Hung, H.-P. Ho, M.-T. Lin, C.-Y. Chen, Y.-Y. Shu, M.-R. Lee, Purge-assisted headspace solid-phase microextraction combined with gas chromatography/mass spectrometry for the determination of trace nitrated polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A 1265, 1–6 (2012). https://doi.org/10.1016/j.chroma.2008.10.056

    Article  CAS  Google Scholar 

  14. X. Cheng, H. Yan, X. Wang, N. Sun, X. Qiao, Vortex-assisted magnetic dispersive solid-phase microextraction for rapid screening and recognition of dicofol residues in tea products. Food Chem. 162, 104–109 (2014). https://doi.org/10.1016/j.foodchem.2014.04.023

    Article  CAS  Google Scholar 

  15. A. Ghiasvand, S. Dowlatshah, N. Nouraei, N. Heidari, F. Yazdankhah, A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. J. Chromatogr. A 1406, 87–93 (2015). https://doi.org/10.1016/j.chroma.2015.06.052

    Article  CAS  Google Scholar 

  16. S.H. Haddadi, V.H. Niri, J. Pawliszyn, Study of desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) from solid matrices using internally cooled coated fiber. Anal. Chim. Acta 652, 224–230 (2009). https://doi.org/10.1016/j.aca.2009.05.026

    Article  CAS  Google Scholar 

  17. A.R. Ghiasvand, S. Hosseinzadeh, J. Pawliszyn, New cold-fiber headspace solid-phase microextraction device for quantitative extraction of polycyclic aromatic hydrocarbons in sediment. J. Chromatogr. A 1124, 35–42 (2006). https://doi.org/10.1016/j.chroma.2006.04.088

    Article  CAS  Google Scholar 

  18. A.R. Ghiasvand, M. Pirdadeh-Beiranvand, Cooling/heating-assisted headspace solid-phase microextraction of polycyclic aromatic hydrocarbons from contaminated soils. Anal. Chim. Acta 900, 56–66 (2015). https://doi.org/10.1016/j.aca.2015.10.016

    Article  CAS  Google Scholar 

  19. A.R. Ghiasvand, S. Hajipour, N. Heidari, Cooling-assisted microextraction: comparison of techniques and applications. Trends Anal. Chem. 77, 54–65 (2016). https://doi.org/10.1016/j.trac.2015.12.008

    Article  CAS  Google Scholar 

  20. M. Behfar, A.R. Ghiasvand, F. Yazdankhah, Reinforced microextraction of polycyclic aromatic hydrocarbons from polluted soil samples using an in-needle coated fiber with polypyrrole/graphene oxide nanocomposite. J. Sep. Sci. 40, 2975–2983 (2017). https://doi.org/10.1002/jssc.201700244

    Article  CAS  Google Scholar 

  21. N.P. Brunton, D.A. Cronin, F.J. Monahan, The effects of temperature and pressure on the performance of carboxen/PDMS fibres during solid phase microextraction (SPME) of headspace volatiles from cooked and raw turkey breast. Flav. Frag. J. 16, 294–302 (2001). https://doi.org/10.1002/ffj.1000

    Article  CAS  Google Scholar 

  22. J. Darrouzès, M. Bueno, C. Pécheyran, M. Holeman, M.P. Gautier, New approach of solid-phase microextraction improving the extraction yield of butyl and phenyltin compounds by combining the effects of pressure and type of agitation. J. Chromatogr. A 2005, 19–27 (1072). https://doi.org/10.1016/j.chroma.2005.02.026

    Google Scholar 

  23. G.S. Groenewold, J.R. Scott, C. Rae, Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber. Anal. Chim. Acta 697, 38–47 (2011). https://doi.org/10.1016/j.aca.2011.04.034

    Article  CAS  Google Scholar 

  24. E. Psillakis, A. Mousouraki, E. Yiantzi, N. Kalogerakis, Effect of Henry’s law constant and operating parameters on vacuum-assisted headspace solid phase microextraction. J. Chromatogr. A 1244, 55–60 (2012). https://doi.org/10.1016/j.chroma.2012.05.006

    Article  CAS  Google Scholar 

  25. E. Psillakis, E. Yiantzi, L. Sanchez-Prado, N. Kalogerakis, Vacuum-assisted headspace solid phase microextraction: improved extraction of semivolatiles by non-equilibrium headspace sampling under reduced pressure conditions. Anal. Chim. Acta 742, 30–36 (2012). https://doi.org/10.1016/j.aca.2012.01.019

    Article  CAS  Google Scholar 

  26. E. Psillakis, E. Yiantzi, N. Kalogerakis, Downsizing vacuum-assisted headspace solid phase microextraction. J. Chromatogr. A 1300, 119–126 (2013). https://doi.org/10.1016/j.chroma.2013.02.009

    Article  CAS  Google Scholar 

  27. C. Lee, Y. Lee, J.G. Lee, A.J. Buglass, Development of a reduced pressure headspace solid-phase microextraction-gas chromatography/mass spectrometric (rpHSSPME-GC/MS) method and application to aroma analysis. Anal. Methods 7, 6504–6513 (2015). https://doi.org/10.1039/C5AY00980D

    Article  CAS  Google Scholar 

  28. E. Yiantzi, N. Kalogerakis, E. Psillakis, Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples. Anal. Chim. Acta 890, 108–116 (2015). https://doi.org/10.1016/j.aca.2015.05.047

    Article  CAS  Google Scholar 

  29. S. Xu, Q. Shuai, J. Pawliszyn, Determination of polycyclic romatic hydrocarbons in sediment by pressure-balanced cold fiber solid phase microextraction. Anal. Chem. 88, 8936–8941 (2016). https://doi.org/10.1021/acs.analchem.6b01944

    Article  CAS  Google Scholar 

  30. F. Xu, Á. García-Bermejo, G. Malarvannan, B. Gómara, H. Neels, A. Covaci, Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography–mass spectrometry. J. Chromatogr. A 1401, 33–41 (2015). https://doi.org/10.1016/j.chroma.2015.05.001

    Article  CAS  Google Scholar 

  31. J.N. Bianchin, G. Nardini, J. Merib, A.N. Dias, E. Martendal, E. Carasek, Simultaneous determination of polycyclic aromatic hydrocarbons and benzene, toluene, ethylbenzene and xylene in water samples using a new sampling strategy combining different extraction modes and temperatures in a single extraction solid-phase microextraction-gas chromatography–mass spectrometry procedure. J. Chromatogr. A 1233, 22–29 (2012). https://doi.org/10.1016/j.chroma.2012.02.022

    Article  CAS  Google Scholar 

  32. T. Gorecki, Effect of sample volume on quantitative analysis by solid-phase microextraction. Part 1. Theoretical considerations. Analyst 122, 1079–1086 (1997). https://doi.org/10.1039/A701303E

    Article  CAS  Google Scholar 

  33. A.R. Ghiasvand, N. Heidari, Cooling-assisted headspace hollow fiber-based liquid-phase microextraction setup for direct determination of PAHs in solid samples by using volatile solvents. Chromatographia 79, 1187–1195 (2016). https://doi.org/10.1007/s10337-016-3133-x

    Article  CAS  Google Scholar 

  34. A.R. Ghiasvand, F. Yazdankhah, S. Hajipour, Use of volatile organic solvents in headspace liquid-phase microextraction by direct cooling of the organic drop using a simple cooling capsule. J. Sep. Sci. 39, 3011–3018 (2016). https://doi.org/10.1002/jssc.201600142

    Article  CAS  Google Scholar 

  35. H.S. Sin, O.S. Gwon, The simultaneous analysis of benzene, toluene, ethylbenzene, o, m, p-xylenes and total petroleum hydrocarbons in soil by GC–FID after ultra-sonication. Bull. Korean Chem. Soc. 21, 1101–1105 (2000)

    Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Lorestan University’ Vice Chancellor of Research and Technology, for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ghiasvand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasvand, A., Zarghami, F. & Beiranvand, M. Ultrasensitive direct determination of BTEX in polluted soils using a simple and novel pressure-controlled solid-phase microextraction setup. J IRAN CHEM SOC 15, 1051–1059 (2018). https://doi.org/10.1007/s13738-018-1302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1302-6

Keywords

Navigation