Skip to main content
Log in

Simple, Low-Cost and Reliable Device for Vacuum-Assisted Headspace Solid-Phase Microextraction of Volatile and Semivolatile Compounds from Complex Solid Samples

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A new simple, low-cost, reliable vacuum-assisted headspace solid-phase microextraction (VA-HS-SPME) device was fabricated and evaluated considering the strengths and weaknesses of previously reported systems. The device can be applied for analysis of solid and liquid samples without sample loss or vacuum loss during the evacuation process, in contrast to similar setups. Additionally, it is simpler, lower cost, and more operator friendly for direct extraction of volatiles and semivolatiles from complicated solid matrices. It was coupled with gas chromatography-flame ionization detection (GC-FID) and applied for direct extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in polluted soil samples, without any sample preparation steps. Parameters affecting the performance of the developed method, such as extraction temperature and time, vacuum level, volumes of vacuum chamber and sample vial, and desorption condition, were investigated and optimized. Under the optimal conditions, calibration curves were linear over the range of 0.01–2 μg g−1 (R 2 > 0.996). The limits of detection (LODs) were found to lie in the range of 0.3–0.8 ng g−1, while the relative standard deviations (RSDs) for six replicate analyses were 5.3–7.1%. The developed VA-HS-SPME/GC-FID procedure was used for ultrasensitive determination of PAHs in contaminated soil samples; the results were statistically in agreement with those obtained using a validated ultrasonic solvent extraction (USE) method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen J-W, Wang S-L, Hsieh DPH, Yang H-H, Lee H-L (2012) Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ 417:68–75. doi:10.1016/j.scitotenv.2011.12.012

    Article  Google Scholar 

  2. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol 25:107–123. doi:10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  3. de Boer J, Wagelmans M (2016) Polycyclic aromatic hydrocarbons in soil-practical options for remediation. Clean 44:648–653. doi:10.1002/clen.201500199

    Google Scholar 

  4. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627. doi:10.3390/ijms13078615

    Article  CAS  Google Scholar 

  5. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. doi:10.1021/ac00218a019

    Article  CAS  Google Scholar 

  6. Ghiasvand AR, Setkova L, Pawliszyn J (2007) Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME–GC-TOF-MS. Flav Frag J 22:377–391. doi:10.1002/ffj.1809

    Article  CAS  Google Scholar 

  7. Behfar M, Ghiasvand AR, Yazdankhah F (2017) Reinforced microextraction of polycyclic aromatic hydrocarbons from polluted soil samples using an in-needle coated fiber with polypyrrole/graphene oxide nanocomposite. J Sep Sci 40:2975–2983. doi:10.1002/jssc.201700244

    Article  CAS  Google Scholar 

  8. Souza-Silva ÉA, Jiang R, Rodríguez-Lafuente A, Gionfriddo E, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Anal Chem 71:224–235. doi:10.1016/j.trac.2015.04.016

    Article  CAS  Google Scholar 

  9. Ghiasvand AR, Nasseri M, Farsizaeh S, Meshkatalsadat MH, Sadeghi-Sarabi R, Shadabi S, Borzoei M (2011) Chemical characterization of cultivated Tagetes minuta L. by use of ultrasound-assisted head space SPME and GC-MS. Chromatographia 73:1031–1035. doi:10.1007/s10337-011-1955-0

    Article  CAS  Google Scholar 

  10. Ghiasvand AR, Hajipour S, Heidari N (2016) Cooling-assisted microextraction: comparison of techniques and applications. Trends Anal Chem 77:54–65. doi:10.1016/j.trac.2015.12.008

    Article  CAS  Google Scholar 

  11. Ghiasvand AR, Heidari N (2016) Cooling-assisted headspace hollow fiber-based liquid-phase microextraction setup for direct determination of PAHs in solid samples by using volatile solvents. Chromatographia 79:1187–1195. doi:10.1007/s10337-016-3133-x

    Article  CAS  Google Scholar 

  12. Ghiasvand AR, Pirdadeh-Beiranvand M (2015) Cooling/heating-assisted headspace solid-phase microextraction of polycyclic aromatic hydrocarbons from contaminated soils. Anal Chim Acta 900:56–66. doi:10.1016/j.aca.2015.10.016

    Article  CAS  Google Scholar 

  13. Zeng J, Chen J, Song X, Wang Y, Ha J, Chen X, Wang X (2010) An electrochemically enhanced solid-phase microextraction approach based on a multi-walled carbon nanotubes/Nafion composite coating. J Chromatogr A 1217:1735–1741. doi:10.1016/j.aca.2012.03.054

    Article  CAS  Google Scholar 

  14. Hsieh P-C, Lee C-L, Jen J-F, Chang K-C (2015) Complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction in determining the binding constants of hydrophobic organic pollutants to dissolved humic substances. Analyst 140:1275–1280. doi:10.1039/C4AN01923G

    Article  CAS  Google Scholar 

  15. Ghiasvand A, Nasirian A, Koonani S, Nouriasl K (2017) Ultrasonic and cooling approaches for reinforcement of the microextraction methods. Anal Bioanal Chem Res 4:105–126. doi:10.22036/abcr.2016.59882.1114

    Google Scholar 

  16. Xu Y, Fan W, Qian MC (2007) Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. J Agric Food Chem 55:3051–3057. doi:10.1021/jf0631732

    Article  CAS  Google Scholar 

  17. Rainey CL, Bors DE, Goodpaster JV (2014) Design and optimization of a total vaporization technique coupled to solid-phase microextraction. Anal Chem 86:11319–11325. doi:10.1021/ac5030528

    Article  CAS  Google Scholar 

  18. Boyaci E, Pawliszyn J (2014) Micelle assisted thin-film solid phase microextraction: a new approach for determination of quaternary ammonium compounds in environmental samples. Anal Chem 86:8916–8921. doi:10.1021/ac5015673

    Article  CAS  Google Scholar 

  19. Fakhari AR, Sahragard A, Ahmar H, Tabani H (2015) A novel platform sensing based on combination of electromembrane-assisted solid phase microextraction with linear sweep voltammetry for the determination of tramadol. J Electroanal Chem 747:12–19. doi:10.1016/j.jelechem.2015.01.032

    Article  CAS  Google Scholar 

  20. Hung C-H, Ho H-P, Lin M-T, Chen C-Y, Shu Y-Y, Lee M-R (2012) Purge-assisted headspace solid-phase microextraction combined with gas chromatography/mass spectrometry for the determination of trace nitrated polycyclic aromatic hydrocarbons in aqueous samples. J Chromatogr A 1265:1–6. doi:10.1016/j.chroma.2008.10.056

    Article  CAS  Google Scholar 

  21. Cheng X, Yan H, Wang X, Sun N, Qiao X (2014) Vortex-assisted magnetic dispersive solid-phase microextraction for rapid screening and recognition of dicofol residues in tea products. Food Chem 162:104–109. doi:10.1016/j.foodchem.2014.04.023

    Article  CAS  Google Scholar 

  22. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852. doi:10.1021/ac00062a008

    Article  CAS  Google Scholar 

  23. Haddadi SH, Pawliszyn J (2009) Cold fiber solid-phase microextraction device based on thermoelectric cooling of metal fiber. J Chromatogr A 1216:2783–2788. doi:10.1016/j.chroma.2008.09.005

    Article  CAS  Google Scholar 

  24. Ghiasvand AR, Yazdankhah F (2017) Single-step reinforced microextraction of polycyclic aromatic hydrocarbons from soil samples using an inside needle capillary adsorption trap with electropolymerized aniline/multi-walled carbon nanotube sorbent. J Chromatogr A 1487:47–53. doi:10.1016/j.chroma.2017.01.056

    Article  CAS  Google Scholar 

  25. Tajik L, Bahrami A, Ghiasvand A, Shahna FG (2017) Determination of BTEX in urine samples using cooling/heating-assisted headspace solid-phase microextraction. Chem Papers. In Press. doi:10.1007/s11696-017-0176-x

    Google Scholar 

  26. Brunton NP, Cronin DA, Monahan FJ (2001) The effects of temperature and pressure on the performance of carboxen/PDMS fibres during solid phase microextraction (SPME) of headspace volatiles from cooked and raw turkey breast. Flav Frag J 16:294–302. doi:10.1002/ffj.1000

    Article  CAS  Google Scholar 

  27. Darrouzès J, Bueno M, Pécheyran C, Holeman M, Potin-Gautier M (2005) New approach of solid-phase microextraction improving the extraction yield of butyl and phenyltin compounds by combining the effects of pressure and type of agitation. J Chromatogr A 1072:19–27. doi:10.1016/j.chroma.2005.02.026

    Article  Google Scholar 

  28. Groenewold GS, Scott JR, Rae C (2011) Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber. Anal Chim Acta 697:38–47. doi:10.1016/j.aca.2011.04.034

    Article  CAS  Google Scholar 

  29. Psillakis E, Mousouraki A, Yiantzi E, Kalogerakis N (2012) Effect of Henry’s law constant and operating parameters on vacuum-assisted headspace solid phase microextraction. J Chromatogr A 1244:55–60. doi:10.1016/j.chroma.2012.05.006

    Article  CAS  Google Scholar 

  30. Psillakis E, Yiantzi E, Sanchez-Prado L, Kalogerakis N (2012) Vacuum-assisted headspace solid phase microextraction: improved extraction of semivolatiles by non-equilibrium headspace sampling under reduced pressure conditions. Anal Chim Acta 742:30–36. doi:10.1016/j.aca.2012.01.019

    Article  CAS  Google Scholar 

  31. Psillakis E, Yiantzi E, Kalogerakis N (2013) Downsizing vacuum-assisted headspace solid phase microextraction. J Chromatogr A 1300:119–126. doi:10.1016/j.chroma.2013.02.009

    Article  CAS  Google Scholar 

  32. Groenewold GS, Scott JR, Lee ED, Lammert SA (2013) Rapid analysis of organophosphonate compounds recovered from vinyl floor tile using vacuum extraction coupled with a fast-duty cycle GC/MS. Anal Methods 5:2227–2236. doi:10.1039/C3AY26280D

    Article  CAS  Google Scholar 

  33. Lee C, Lee Y, Lee J-G, Buglass AJ (2015) Development of a reduced pressure headspace solid-phase microextraction-gas chromatography/mass spectrometric (rpHSSPME–GC/MS) method and application to aroma analysis. Anal Methods 7:6504–6513. doi:10.1039/C5AY00980D

    Article  CAS  Google Scholar 

  34. Yiantzi E, Kalogerakis N, Psillakis E (2015) Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples. Anal Chim Acta 890:108–116. doi:10.1016/j.aca.2015.05.047

    Article  CAS  Google Scholar 

  35. Xu F, García-Bermejo Á, Malarvannan G, Gómara B, Neels H, Covaci A (2015) Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry. J Chromatogr A 1401:33–41. doi:10.1016/j.chroma.2015.05.001

    Article  CAS  Google Scholar 

  36. Yiantzi E, Kalogerakis N, Psillakis E (2016) Design and testing of a new sampler for simplified vacuum-assisted headspace solid-phase microextraction. Anal Chim Acta 927:46–54. doi:10.1016/j.aca.2016.05.001

    Article  CAS  Google Scholar 

  37. Xu S, Shuai Q, Pawliszyn J (2016) Determination of polycyclic aromatic hydrocarbons in sediment by pressure-balanced cold fiber solid phase microextraction. Anal Chem 88:8936–8941. doi:10.1021/acs.analchem.6b01944

    Article  CAS  Google Scholar 

  38. Trujillo-Rodríguez MJ, Pino V, Psillakis E, Anderson JL, Ayala JH, Yiantzi E, Afonso AM (2017) Vacuum-assisted headspace-solid phase microextraction for determining volatile free fatty acids and phenols. Investigations on the effect of pressure on competitive adsorption phenomena in a multicomponent system. Anal Chim Acta 962:41–51. doi:10.1016/j.aca.2017.01.056

    Article  Google Scholar 

  39. Glykioti M-L, Yiantzi E, Psillakis E (2016) Room temperature determination of earthy–musty odor compounds in water using vacuum-assisted headspace solid-phase microextraction. Anal Methods 8:8065–8071. doi:10.1039/C6AY02210C

    Article  CAS  Google Scholar 

  40. Mo K-F, Heredia-Langner A, Fraga CG (2017) Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction. Talanta 164:92–99. doi:10.1016/j.talanta.2016.11.016

    Article  CAS  Google Scholar 

  41. Trujillo-Rodríguez MJ, Pino V, Anderson JL (2017) Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta 172:86–94. doi:10.1016/j.talanta.2017.05.021

    Article  Google Scholar 

  42. Psillakis E (2017) Vacuum-assisted headspace solid-phase microextraction: a tutorial review. Anal Chim Acta 986:12–24. doi:10.1016/j.aca.2017.06.033

    Article  CAS  Google Scholar 

  43. Ghiasvand AR, Hosseinzadeh S, Pawliszyn J (2006) New cold-fiber headspace solid-phase microextraction device for quantitative extraction of polycyclic aromatic hydrocarbons in sediment. J Chromatogr A 1124:35–42. doi:10.1016/j.chroma.2006.04.088

    Article  CAS  Google Scholar 

  44. Vial J, Jardy A (1999) Experimental comparison of the different approaches to estimate LOD and LOQ of an HPLC method. Anal Chem 71:2672–2677. doi:10.1021/ac981179n

    Article  CAS  Google Scholar 

  45. Banjoo DR, Nelson PK (2005) Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments. J Chromatogr A 1066:9–18. doi:10.1016/j.chroma.2005.01.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the managers of Lorestan Petrochemical Company for their help with fabrication of the VA-HS-SPME setup and for provision of the chromatographic laboratory to carry out the experiments. The authors are also grateful to Dr. Fereshteh Mousavi, official English translator and instructor, for editing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ghiasvand.

Ethics declarations

Funding

This study was not funded by any grants.

Conflict of interest

Mohammad Beiranvand and Ali Reza Ghiasvand have nothing to declare.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiranvand, M., Ghiasvand, A. Simple, Low-Cost and Reliable Device for Vacuum-Assisted Headspace Solid-Phase Microextraction of Volatile and Semivolatile Compounds from Complex Solid Samples. Chromatographia 80, 1771–1780 (2017). https://doi.org/10.1007/s10337-017-3422-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3422-z

Keywords

Navigation