Skip to main content
Log in

Modeling of the Tensile Strength of Immiscible Binary Polymer Blends Considering the Effects of Polymer/Polymer Interface and Morphological Variation

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, a unique model is proposed for predicting the tensile strength of binary polymer blends considering the effects of polymer/polymer interface and the morphological variation of the system. The modeling was performed based on the combination of analytical and artificial neural network (ANN) modeling methods. For the analytical part, Kolarik’s model was developed in accordance with the system requirements and ANN was simultaneously involved in order to interpret some effective model parameters using the tensile test result of an actual sample (e.g. the yield strength and thickness of the interface, etc.). Furthermore, the model accuracy was evaluated by comparing the tensile test results of differently prepared iPP/PA and PS/PMMA blend samples and also some other data from literature with the model predictions. It was revealed that the designed ANN perfectly elevates the capability of the analytical section in order to predict the tensile strength of binary polymer blends with different compositions (prediction error < 10%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gomari, S.; Ghasemi, I.; Karrabi, M.; Azizi, H. Organoclay localization in polyamide 6/ethylene-butene copolymer grafted maleic anhydride blends: The effect of different types of organoclay. J. Polym. Res. 2011, 19, 9769.

    Article  Google Scholar 

  2. Fathi, A.; Lee, S.; Breen, A.; Shirazi, A. N.; Valtchev, P.; Dehghani, F. Enhancing the mechanical properties and physical stability of biomimetic polymer hydrogels for micro-patterning and tissue engineering applications. Eur. Polym. J. 2014, 59, 161–170.

    Article  CAS  Google Scholar 

  3. Robeson, L. M. Polymer blends: A comprehensive review. Hanser, 2007.

  4. Ezzati, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Fortelny, I. Preparation of porous PLLA/PCL blend by a combination of PEO phase and NaCl particulate leaching in PLLA/PCL/PEO/NaCl blend. Iran Polym. J. 2014, 23, 757–766.

    Article  CAS  Google Scholar 

  5. Sharifzadeh, E. Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of janus nanoparticles on polymer/polymer interface. Chinese J. Polym. Sci. 2019, 37, 164–177.

    Article  CAS  Google Scholar 

  6. Minaei-Zaim, M.; Ghasemi, I.; Karrabi, M.; Azizi, H. Effect of injection molding parameters on properties of cross-linked low-density polyethylene/ethylene vinyl acetate/organoclay nanocomposite foams. Iran Polym. J. 2012, 21, 537–546.

    Article  CAS  Google Scholar 

  7. Shonaike, G. O.; Simon, G. P. Polymer Blends and Alloys. Taylor & Francis, 1999.

  8. Dasari, A.; Yu, Z. Z.; Mai, Y. W. Polymer nanocomposites: Towards multi-functionality. Springer London, 2016.

    Book  Google Scholar 

  9. Gupta, R. K.; Kennel, E.; Kim, K. J. Polymer nanocomposites handbook. CRC Press, 2009.

  10. Utracki, L. A. Commercial polymer blends. Springer US, 2013.

    Google Scholar 

  11. Sharifzadeh, E.; Salami-Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid. Polym. Sci. 2017, 955, 25–36.

    Article  Google Scholar 

  12. Chen, S.; Sarafbidabad, M.; Zare, Y.; Rhee, K. Y. Estimation of the tensile modulus of polymer carbon nanotube nanocomposites containing filler networks and interphase regions by development of the Kolarik model. RSC Adv. 2018, 8, 23825–23834.

    Article  CAS  Google Scholar 

  13. Zare, Y. A Two-step method based on micromechanical models to predict the Young’s modulus of polymer nanocomposites. Macromol. Mater. Eng. 2016, 301, 846–852.

    Article  CAS  Google Scholar 

  14. Zare, Y.; Rhee, K. Y. Development of a model for electrical conductivity of polymer/graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind. Eng. Chem. Res. 2017, 56, 9107–9115.

    Article  CAS  Google Scholar 

  15. Sharifzadeh, E.; Ghasemi, I.; Karrabi, M.; Azizi, H. A new approach in modeling of mechanical properties of binary phase polymeric blends. Iran Polym. J. 2014, 23, 525–530.

    Article  CAS  Google Scholar 

  16. Kolařík, J. Three-dimensional models for predicting the modulus and yield strength of polymer blends, foams, and particulate composites. Polym. Compos. 1997, 18, 433–441.

    Article  Google Scholar 

  17. Sharifzadeh, E.; Ghasemi, I.; Safajou-Jahankhanemlou, M. Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach. Iran Polym. J. 2015, 24, 735–746.

    Article  CAS  Google Scholar 

  18. Ji, X. L.; Jing, J. K.; Jiang, W.; Jiang, B. Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983–993.

    Article  CAS  Google Scholar 

  19. Kolarik, J. Simultaneous prediction of the modulus and yield strength of binary polymer blends. Polym. Eng. Sci. 1996, 36, 2518–2524.

    Article  CAS  Google Scholar 

  20. Wang, J. F.; Carson, J. K.; North, M. F.; Cleland, D. J. A knotted and interconnected skeleton structural model for predicting Young’s modulus of binary phase polymer blends. Polym. Eng. Sci. 2010, 50, 643–651.

    Article  CAS  Google Scholar 

  21. Sharifzadeh, E.; Ghasemi, I.; Qarebagh, A. N. Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus. Iran Polym. J. 2015, 24, 1039–1047.

    Article  CAS  Google Scholar 

  22. Werner, A.; Schmid, F.; Müller, M.; Binder, K. In Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E, Berlin, Heidelberg, Springer Berlin Heidelberg: Berlin, Heidelberg, 1999, pp. 176–185.

    Google Scholar 

  23. Kar, G. P.; Biswas, S.; Bose, S. Tailoring the interface of an immiscible polymer blend by a mutually miscible homopolymer grafted onto graphene oxide: Outstanding mechanical properties. Phys. Chem. Chem. Phys. 2011, 17, 1811–1821.

    Article  Google Scholar 

  24. Oslanec, R.; Brown, H. R. Entanglement density at the interface between two immiscible polymers. Macromolecules 2003, 36, 5839–5844.

    Article  CAS  Google Scholar 

  25. Li, J.; Ma, P. L.; Favis, B. D. The role of the blend interface type on morphology in cocontinuous polymer blends. Macromolecules 2002, 35, 2005–2016.

    Article  CAS  Google Scholar 

  26. Pukánszky, B.; Tüdõs, F. Miscibility and mechanical properties of polymer blends. Macromolecular Symposia 1990, 38, 221–231.

    Article  Google Scholar 

  27. Yousef, B. F.; Mourad, A. H. I.; Hilal-Alnaqbi, A. Prediction of the mechanical properties of PE/PP blends using artificial neural networks. Procedia Eng. 2011, 10, 2713–2718.

    Article  CAS  Google Scholar 

  28. Yousef, B. F.; Mourad, A. H. I.; Hilal-Alnaqbi, A. Modeling of the mechanical behavior of polyethylene/polypropylene blends using artificial neural networks. Int. J. Adv. Manuf. Technol. 2013, 64, 601–611.

    Article  Google Scholar 

  29. Balasubramanian, M.; Paglicawan, M. A.; Zhang, Z. X.; Lee, S. H.; Xin, Z. X.; Kim, J. K. Prediction and optimization of mechanical properties of polypropylene/waste tire powder blends using a hybrid artificial neural network-genetic algorithm (GAANN). J. Thermoplast. Compos. Mater. 2008, 21, 51–69.

    Article  CAS  Google Scholar 

  30. Roy, N. K.; Potter, W. D.; Landau, D. P. Designing polymer blends using neural networks, genetic algorithms, and markov chains. Appl. Intell. 2004, 20, 215–229.

    Article  Google Scholar 

  31. Werner, A.; Schmid, F.; Müller, M.; Binder, K. In Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E, High performance computing in science and engineering’ 98, Krause, E.; Jäger, W., Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 176–185.

  32. Dong, B.; Guo, R.; Yan, L. T. Coassembly of janus nanoparticles in asymmetric diblock copolymer scaffolds: Unconventional entropy effect and role of interfacial topology. Macromolecules 2014, 47, 4369–4379.

    Article  CAS  Google Scholar 

  33. Chen, P.; Yang, Y.; Dong, B.; Huang, Z.; Zhu, G.; Cao, Y.; Yan, L. T. Polymerization-induced interfacial self-assembly of Janus nanoparticles in block copolymers: Reaction-mediated entropy effects, diffusion dynamics, and tailorable micromechanical behaviors. Macromolecules 2017, 50, 2078–2091.

    Article  CAS  Google Scholar 

  34. Teh, J. W. Structure and properties of polyethylene-polypropylene blend. J. Appl. Polym. Sci. 1983, 28, 605–618.

    Article  CAS  Google Scholar 

  35. Bataille, P.; Boissé, S.; Schreiber, H. P. Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures. Polym. Eng. Sci. 1987, 27, 622–626.

    Article  CAS  Google Scholar 

  36. Menyhárd, A.; Varga, J.; Liber, Á.; Belina, G. Polymer blends based on the β-modification of polypropylene. Eur. Polym. J. 2001, 41, 669–677.

    Article  Google Scholar 

  37. Bartczak, Z.; Galeski, A. Mechanical properties of polymer blends. In Polymer Blends Handbook, Utracki, L. A.; Wilkie, C. A., Eds. Springer Netherlands, Dordrecht, 2014, pp. 1203–1297.

    Google Scholar 

  38. Utracki, L. A.; Wilkie, C. A. Polymer blends handbook. Springer Netherlands, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Sharifzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifzadeh, E. Modeling of the Tensile Strength of Immiscible Binary Polymer Blends Considering the Effects of Polymer/Polymer Interface and Morphological Variation. Chin J Polym Sci 37, 1176–1182 (2019). https://doi.org/10.1007/s10118-019-2274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2274-4

Keywords

Navigation