Skip to main content
Log in

Current progress of self-healing polymers for medical applications in tissue engineering

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The research of self-healable polymers intended for medical use has increased in the last 20 years. These materials can self-repair and recover their functionality after damage; thus, they are of significant interest in diverse academic areas, including the biomedical field. In this regard, numerous synthetic and natural polymers are being used to develop self-healing hydrogels for tissue engineering applications, particularly for the restoration of bones, cartilage, skin, and even the central nervous system. These materials possess distinct advantages; for example, natural polymers are usually biocompatible and biodegradable, whereas synthetic polymers could be more suitable when rigid hydrogels with fast kinetics are required. Moreover, the intrinsic reticular matrix of these self-healing systems allows the load of diverse drugs and their controlled release. Remarkably, polymers may be mixed to obtain hydrogels with enhanced mechanical and biological properties. The elaboration of self-healable hydrogels is carried out through either covalent crosslinking or non-covalent crosslinking; the selection of the method depends on many factors, including the required mechanical properties and desired use. Although some articles have reviewed self-healing hydrogels, papers focused on utilizing these systems in tissue engineering are scarce. In this article, we perform a concise description of fabrication methods of self-healing hydrogels and the employed polymers. Furthermore, we provide numerous examples of hydrogels intended for biomedical purposes and discuss their key functional properties. Our main objective was to point out the most recent progress in utilizing self-healing polymers in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Menikheim SD, Lavik EB (2020) Self-healing biomaterials: the next generation is nano. Wiers Nanomed Nanobiotechnol 12:e1641

    Google Scholar 

  2. Wang S, Urban MW (2020) Self-healing polymers. Nat Rev Mater 5:562–583

    Article  CAS  Google Scholar 

  3. Yang Y, Urban MW (2013) Self-healing polymeric materials. ChemSoc Rev 42:7446–7467

    CAS  Google Scholar 

  4. Ding F, Li H, Du Y, Shi X (2018) Recent advances in chitosan-based self-healing materials. Res Chem Intermed 44:4827–4840

    Article  CAS  Google Scholar 

  5. Zhang R, Tao Y, Xu Q, Liu N, Chen P, Zhou Y, Bai Z (2020) Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin. Int J Biol Macromol 144:473–482

    Article  CAS  PubMed  Google Scholar 

  6. Qiao L, Liu C, Liu C, Yang L, Zhang M, Liu W, Wang J, Jian X (2019) Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds. J Mater Sci 54:8814–8828

    Article  CAS  Google Scholar 

  7. Lei J, Li X, Wang S, Yuan L, Ge L, Li D, Mu C (2019) Facile fabrication of biocompatible gelatin-based self-healing hydrogels. ACS Appl Polym Mater 1:1350–1358

    Article  CAS  Google Scholar 

  8. Chen W, Bu Y, Li D, Liu Y, Chen G, Wan X, Li N (2020) Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection. J Mater Chem C 8:900–908

    Article  CAS  Google Scholar 

  9. Yan X, Chen Q, Zhu L, Chen H, Wei D, Chen F, Tang Z, Yang J, Zheng J (2017) High strength and self-healable gelatin/polyacrylamide double network hydrogels. J Mater Chem B 5:7683–7691

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Xia H, Zhao Y (2012) Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett 1:1233–1236

    Article  CAS  Google Scholar 

  11. Sun F, Bu Y, Chen Y, Yang F, Yu J, Wu D (2020) An injectable and instant self-healing medical adhesive for wound sealing. ACS Appl Mater Interfaces 12:9132–9140

    Article  CAS  PubMed  Google Scholar 

  12. Leyva-Gómez G, Santillan-Reyes E, Lima E, Madrid-Martínez A, Krötzsch E, Quintanar-Guerrero D, Garciadiego-Cázares D, Martínez-Jiménez A, Hernández Morales M (2017) A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management. Mater Sci Eng C 74:36–46

    Article  Google Scholar 

  13. González-Torres M, Leyva-Gómez G, Rivera M, Krötzsch E, Rodríguez-Talavera R, Rivera AL, Cabrera-Wrooman A (2018) Biological activity of radiation-induced collagen-polyvinyl pyrrolidone-PEG hydrogels. Mater Lett 214:224–227

    Article  Google Scholar 

  14. González Torres M, Cerna Cortez J, Balam Muñoz Soto R, Ríos Perez A, Pfeiffer H, Leyva Gómez G, Zúñiga Ramos J, Rivera AL (2018) Synthesis of gamma radiation-induced PEGylated cisplatin for cancer treatment. RSC Adv 8:34718–34725

    Article  Google Scholar 

  15. Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A (2020) Supramolecular self-healing materials from non-covalent cross-linking host-guest interactions. Chem Commun 56:4381–4395

    Article  CAS  Google Scholar 

  16. Li X, Zhang Y, Yang Q, Li D, Zhang G, Long S (2018) Agar/PAAc-Fe3+ hydrogels with pH-sensitivity and high toughness using dual physical cross-linking. Iran Polym J 27:829–840

    Article  CAS  Google Scholar 

  17. Mphahlele K, Ray SS, Kolesnikov A (2017) Self-healing polymeric composite material design, failure analysis and future outlook: a review. Polymers 9:1–22

    Article  Google Scholar 

  18. Wang Y, Adokoh CK, Narain R (2018) Recent development and biomedical applications of self-healing hydrogels. Expert Opin Drug Deliv 15:77–91

    Article  PubMed  Google Scholar 

  19. Wei Z, Gerecht S (2018) A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials 185:86–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou X, Li Y, Chen S, Fu Y, Wang S, Li G, Tao L, Wei Y, Wang X, Liang JF (2018) Dynamic agent of an injectable and self-healing drug-loaded hydrogel for embolization therapy. Colloids Surf B Biointerfaces 172:601–607

    Article  CAS  PubMed  Google Scholar 

  21. Du WB, Deng A, Guo J, Chen J, Li H, Gao Y (2019) An injectable self-healing hydrogel-cellulose nanocrystals conjugate with excellent mechanical strength and good biocompatibility. Carbohydr Polym 223:115084

    Article  CAS  PubMed  Google Scholar 

  22. Amaral AJR, Gaspar VM, Mano JF (2020) Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications. Polym J 52:997–1006

    Article  CAS  Google Scholar 

  23. Xiao G, Wang Y, Zhang H, Chen L, Fu S (2019) Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone. Carbohydr Polym 218:68–77

    Article  CAS  PubMed  Google Scholar 

  24. An H, Zhu L, Shen J, Li W, Wang Y, Qin J (2020) Self-healing PEG-poly(aspartic acid) hydrogel with rapid shape recovery and drug release. Colloids Surf B Biointerfaces 185:110601

    Article  CAS  PubMed  Google Scholar 

  25. An H, Bo Y, Chen D, Wang Y, Wang H, He Y, Qin J (2020) Cellulose-based self-healing hydrogel through boronic ester bonds with excellent biocompatibility and conductivity. RSC Adv 10:11300–11310

    Article  CAS  Google Scholar 

  26. Tran VT, Mredha MTI, Na JY, Seon JK, Cui J, Jeon I (2020) Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability. Chem Eng J 394:124941

    Article  CAS  Google Scholar 

  27. He J, Shi M, Liang Y, Guo B (2020) Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem Eng J 394:124888

    Article  CAS  Google Scholar 

  28. Tang J, Javaid MU, Pan C, Yu G, Berry RM, Tam KC (2020) Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohydr Polym 229:115486

    Article  CAS  PubMed  Google Scholar 

  29. Yang L, Zeng Y, Wu H, Zhou C, Tao L (2020) An antioxidant self-healing hydrogel for 3D cell cultures. J Mater Chem B 8:1383–1388

    Article  CAS  PubMed  Google Scholar 

  30. Figueiredo T, Ogawa Y, Jing J, Cosenza V, Jeacomine I, Olsson JDM, Gerfaud T, Boiteau J-G, Harris C, Auzély-Velty R (2020) Self-crosslinking smart hydrogels through direct complexation between benzoxaborole derivatives and diols from hyaluronic acid. Polym Chem 11:3800–3811

    Article  CAS  Google Scholar 

  31. Cui J, Del CA (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun 48:9302–9304

    Article  CAS  Google Scholar 

  32. Strandman S, Zhu XX (2016) Self-healing supramolecular hydrogels based on reversible physical interactions. Gels 2:16

    Article  PubMed Central  Google Scholar 

  33. Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Rapid self-healing hydrogels. Proc Natl Acad Sci USA 109:4383–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, Hayes W, MacKay ME, Rowan SJ (2009) A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π-π Stacking interactions. Chem Commun 2009:6717–6719

    Article  Google Scholar 

  35. Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Xiong C, Tao Z, Fan Y, Tang X, Yang H (2015) Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel. RSC Adv 5:33083–33088

    Article  CAS  Google Scholar 

  37. Bai T, Liu S, Sun F, Sinclair A, Zhang L, Shao Q, Jiang S (2014) Biomaterials zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 35:3926–3933

    Article  CAS  PubMed  Google Scholar 

  38. Kostina NY, Sharifi S, de los Santos-Pereira A, Michálek J, Grijpma DW, Rodriguez-Emmenegger C (2013) Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. J Mater Chem B 1:5644

    Article  CAS  PubMed  Google Scholar 

  39. Campanella A, Döhler D, Binder WH (2018) Self-Healing in supramolecular polymers. Macromol Rapid Commun 39:1–19

    Article  Google Scholar 

  40. Li CH, Zuo JL (2019) Self-healing polymers based on coordination bonds. Adv Mater 1903762:1–29

    Google Scholar 

  41. Xu C, Zhan W, Tang X, Mo F, Fu L, Lin B (2018) Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polym Test 66:155–163

    Article  CAS  Google Scholar 

  42. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005

    Article  CAS  Google Scholar 

  43. Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47:6889–6899

    Article  CAS  Google Scholar 

  44. Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J Am ChemSoc 132:12051–12058

    Article  CAS  Google Scholar 

  45. Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang C, Nie Z (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601

    Article  CAS  Google Scholar 

  46. Bai T, Liu S, Sun F, Sinclair A, Zhang L, Shao Q, Jiang S (2014) Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 35:3926–3933

    Article  CAS  PubMed  Google Scholar 

  47. Li L, Yan B, Yang J, Chen L, Zeng H (2015) Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv Mater 27:1294–1299

    Article  CAS  PubMed  Google Scholar 

  48. Lai JC, Li L, Wang DP, Zhang MH, Mo SR, Wang X, Zeng KY, Li CH, Jiang Q, You XZ, Zuo JL (2018) A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat Commun 9:2725

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lei Y, Huang W, Huang Q, Zhang A (2019) A novel polysiloxane elastomer based on reversible aluminum-carboxylate coordination. New J Chem 43:261–268

    Article  CAS  Google Scholar 

  50. Lee J, Moon H, Paeng K, Song C (2018) Reversible assembly of terpyridineincorporated norbornene-based polymer via a ring-opening metathesis polymerization and its self-healing property. Polymers 10:1173

    Article  PubMed Central  Google Scholar 

  51. Mei JF, Jia XY, Lai JC, Sun Y, Li CH, Wu JH, Cao Y, You XZ, Bao Z (2016) A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π-πinteractions. Macromol Rapid Commun 37:1667–1675

    Article  CAS  PubMed  Google Scholar 

  52. Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A (2013) Preorganizedhydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater 25:2849–2853

    Article  CAS  PubMed  Google Scholar 

  53. Miao T, Fenn SL, Charron PN, Oldinski RA (2015) Self-healing and thermoresponsivedual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromol 16:3740–3750

    Article  CAS  Google Scholar 

  54. Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J (2015) Self-healing supramolecular self-assembled hydrogels based on poly(L-glutamic acid). Biomacromol 16:3508–3518

    Article  CAS  Google Scholar 

  55. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host-guest polymers. Nat Commun 2:511

    Article  PubMed  Google Scholar 

  56. Chuo TW, Wei TC, Liu YL (2013) Electrically driven self-healing polymers based on reversible guest-host complexation of β-cyclodextrin and ferrocene. J Polym Sci Part A Polym Chem 51:3395–3403

    Article  CAS  Google Scholar 

  57. Wang YF, Zhang DL, Zhou T, Zhang HS, Zhang WZ, Luo L, Zhang AM, Li BJ, Zhang S (2014) A reversible functional supramolecular material formed by host-guest inclusion. Polym Chem 5:2922

    Article  CAS  Google Scholar 

  58. Janeček ER, McKee JR, Tan CSY, Nykänen A, Kettunen M, Laine J, Ikkala O, Scherman OA (2015) Hybrid supramolecular and colloidal hydrogels that bridge multiple length scales. Angew Chemie Int Ed 54:5383–5388

    Article  Google Scholar 

  59. Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA (2012) Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J Am Chem Soc 134:11767–11773

    Article  CAS  PubMed  Google Scholar 

  60. Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M (2019) Self-healing hydrogels: The next paradigm shift in tissue engineering? Adv Sci 6:1801664

    Article  Google Scholar 

  61. Sharma A, Rawat K, Solanki PR, Bohidar HB (2017) Self-healing gelatin ionogels. Int J Biol Macromol 95:603–607

    Article  CAS  PubMed  Google Scholar 

  62. Del Prado-Audelo ML, Caballero-Florán IH, Sharifi-Rad J, Mendoza-Muñoz N, González-Torres M, Urbán-Morlán Z, Florán B, Cortes H, Leyva-Gómez G (2020) Chitosan-decorated nanoparticles for drug delivery. J Drug Deliv Sci Technol 59:101896

    Article  CAS  Google Scholar 

  63. Li Y, Wang X, Wei Y, Tao L (2017) Chitosan-based self-healing hydrogel for bioapplications. Chinese Chem Lett 28:2053–2057

    Article  CAS  Google Scholar 

  64. Yang X, Yang H, Jiang X, Yang B, Zhu K, Lai NC, Huang C, Chang C, Bian L, Zhang L (2021) Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydr Polym 256:117574

    Article  CAS  Google Scholar 

  65. Guadarrama-Acevedo MC, Mendoza-Flores RA, Del Prado-Audelo ML, Urbá-Morlán Z, Giraldo-Gomez DM, Magaña JJ, González-Torres M, Reyes-Hernández OD, Figueroa-González G, Caballero-Florán IH, Florán-Hernández CD, Florán B, Cortés H, Leyva-Gómez G (2019) Development and evaluation of alginate membranes with curcumin-loaded nanoparticles for potential wound-healing applications. Pharmaceutics 11:11080389

    Article  Google Scholar 

  66. Pettignano A, Häring M, Bernardi L, Tanchoux N, Quignard F, DíazDíaz D (2017) Self-healing alginate-gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters. Mater Chem Front 1:73–79

    Article  CAS  Google Scholar 

  67. Cortes H, Caballero-Florán IH, Mendoza-Muñoz N, Escutia-Guadarrama L, Figueroa-González G, González-Del Carmen M, Varela-Cardoso M, González-Torres M, Florán B, Del Prado-Audelo ML, Leyva-Gómez G (2020) Xanthan gum in drug release. Cell Mol Biol 66:199

    Article  PubMed  Google Scholar 

  68. Talodthaisong C, Boonta W, Thammawithan S, Patramanon R, Kamonsutthipaijit N, Hutchison JA, Kulchat S (2020) Composite guar gum-silver nanoparticle hydrogels as self-healing, injectable, and antibacterial biomaterials. Mater Today Commun 24:100992

    Article  CAS  Google Scholar 

  69. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  70. Mauldin TC, Kessler MR (2010) Self-healing polymers and composites. Int Mater Rev 55:317–346

    Article  CAS  Google Scholar 

  71. Dohler D, Michael P, Binder W (2013) In: Binder WH (ed) Self-healing polymers: from principal to application. Wiley-VCH Verlag GmbH, Weinheim

  72. Joodaki H, Panzer MB (2018) Skin mechanical properties and modeling: A review. J Eng Med 232:323–343

    Article  Google Scholar 

  73. Bilston LE (2011) In: Miller K (ed) Biomechanics of the brain, 2nd edn. Springer, New York

  74. Budday S, Sommer G, Birkl C, Langkmmer C, Haybaecck J, Kohnert J, Bauer M, Paulsen F, Steinmann P, Kuhl E, Holzapfel GA (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340

    Article  CAS  PubMed  Google Scholar 

  75. Morgan EF, Unnikrisnan GU, Hussein AI (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 20:19–43

    Article  Google Scholar 

  76. Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, Wolfram U (2016) Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93:196–211

    Article  PubMed  Google Scholar 

  77. Dong XN, Acuna RL, Luo Q, Wang X (2012) Orientation dependence of progressive post-yield behavior of human cortical bone in compression. NIH Public Access 45:2829–2834

    Google Scholar 

  78. Nguyen QT, Hwang Y, Chen AC, Varghese S, Sah RL (2012) Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials 33:6682–6690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705

    Article  CAS  PubMed  Google Scholar 

  80. Mauffrey C, Barlow BT, Smith W (2015) Management of segmental bone defects. J Am Acad Orthop Surg 23:143–153

    PubMed  Google Scholar 

  81. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169

    Article  CAS  PubMed  Google Scholar 

  82. Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11:213–222

    Article  CAS  PubMed  Google Scholar 

  83. Black CRM, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo ROC (2015) Bone tissue engineering. Curr Mol Biol Rep 1:132–140

    Article  PubMed  PubMed Central  Google Scholar 

  84. Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC, Desai RM, Madl CL, Xu M, Xuanhe Z, Chaudhuri O, Verbeke C, Kim WS, Alim K, Mammoto A, Ingber DE, Duda GN, Money DJ (2015) Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater 14:1269–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burr DB (2011) Why bones bend but don’t break. J Musculoskelet Neuronal Interact 11:270–285

    CAS  PubMed  Google Scholar 

  86. Hughes JM, Popp KL, Yanovich R, Bouxsein ML, Matheny RWJ (2017) The role of adaptive bone formation in the etiology of stress fracture. Exp Biol Med 242:897–906

    Article  CAS  Google Scholar 

  87. Metzger TA, Schwaner SA, LaNeve AJ, Kreipke TC, Niebur GL (2015) Pressure and shear stress in trabecular bone marrow during whole bone loading. J Biomech 48:3035–3043

    Article  PubMed  Google Scholar 

  88. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E (2015) Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9:4686–4697

    Article  CAS  PubMed  Google Scholar 

  89. Costa AMS, Mano JF (2015) Extremely strong and tough hydrogels as prospective candidates for tissue repair—a review. Eur Polym J 72:344–364

    Article  CAS  Google Scholar 

  90. Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lü S, Bai X, Liu H, Ning P, Wang Z, Gao C, Ni B, Liu M (2017) An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair. J Mater Chem B 5:3739–3748

    Article  PubMed  Google Scholar 

  92. Martínez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP (2011) Bone reservoir: Injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. J Con Rel 152:232–240

    Article  Google Scholar 

  93. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200

    Article  CAS  PubMed  Google Scholar 

  94. Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, Zhu L, Qi Ma, Wang Y, Weng X, Ossipov DA (2017) Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv Funct Mater 27:1700591

    Article  Google Scholar 

  95. Boehm AV, Meininger S, Gbureck U, Müller FA (2020) Self-healing capacity of fiber-reinforced calcium phosphate cements. Sci Rep 10:1–13

    Article  Google Scholar 

  96. Gačanin J, Kovtun A, Fischer S, Scwager V, Quambusch J, Kuan SL, Liu W, Boldt F, Chuang Li, Yang Z, Liu D, Wu Y, Weil T, Holger B, Ignatius A (2017) Spatiotemporally controlled release of rho-inhibiting C3 toxin from a protein–DNA hybrid hydrogel for targeted inhibition of osteoclast formation and activity. Adv Health c Mater 6:1700392

    Article  Google Scholar 

  97. Gladman AS, Celestine ADN, Sottos NR, White SR (2015) Autonomic healing of acrylic bone cement. Adv Health Mater 4:202–207

    Article  CAS  Google Scholar 

  98. Shaabani A, Sedghi R, Motasadizadeh H, Dinarvand R (2021) Self-healable conductive polyurethane with the body temperature-responsive shape memory for bone tissue engineering. Chem Eng J 411:128449

    Article  CAS  Google Scholar 

  99. Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7:43–49

    Article  CAS  PubMed  Google Scholar 

  100. McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR (2010) Articular cartilage injury in athletes. Cartilage 1:165–179

    Article  PubMed  PubMed Central  Google Scholar 

  101. Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Can V, Kochovski Z, Reiter V, Severin N, Siebenbürger M, Kent B, Just J, Rabe JP, Ballauff M, Okay O (2016) Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49:2281–2287

    Article  CAS  Google Scholar 

  103. Gulyuz U, Okay O (2013) Self-healing polyacrylic acid hydrogels. Soft Matt 9:10287–10293

    Article  CAS  Google Scholar 

  104. Chen J, An R, Han L, Wang X, Zhang Y, Shi L, Ran R (2019) Tough hydrophobic association hydrogels with self-healing and reforming capabilities achieved by polymeric core-shell nanoparticles. Mater Sci Eng C 99:460–467

    Article  CAS  Google Scholar 

  105. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31:3103–3113

    Article  CAS  PubMed  Google Scholar 

  107. Jin R, Teixeira LSM, Krouwels A, Dijkstra PJ, Van Blitterswijk CA, Karperien M, Feijen J (2010) Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta Biomater 6:1968–1977

    Article  CAS  PubMed  Google Scholar 

  108. Liu X, Yang Y, Li Y, Niu X, Zhao B, Wang Y, Bao C, Xie Z, Lin Q, Zhu L (2017) Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale 9:4430–4438

    Article  CAS  PubMed  Google Scholar 

  109. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965

    Article  CAS  PubMed  Google Scholar 

  110. Turner MR (2016) Self-healing biomaterials. Physiol Behav 176:139–148

    Google Scholar 

  111. Beddoes CM, Whitehouse MR, Briscoe WH, Su B (2016) Hydrogels as a replacement material for damaged articular hyaline cartilage. Materials 9:443

    Article  PubMed Central  Google Scholar 

  112. Sabzi M, Samadi N, Abbasi F, Mahdavinia GR, Babaahmadi M (2017) Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure. Mater Sci Eng C 74:374–381

    Article  CAS  Google Scholar 

  113. Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031

    Article  CAS  PubMed  Google Scholar 

  114. Leroy M, Labbé JF, Ouellet M, Jean J, Lefèvre T, Laroche G, Auger M, Pouliot R (2014) A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater 10:2703–2711

    Article  CAS  PubMed  Google Scholar 

  115. Elnar TV, Ailey TB (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542

    Article  Google Scholar 

  116. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Soni SK, Kulkarni RV (2019) Novel biocompatible poly(acrylamide)-grafted-dextran hydrogels: Synthesis, characterization and biomedical applications. J Microbiol Methods 159:200–210

    Article  CAS  PubMed  Google Scholar 

  117. Bellini MZ, De O-N, Moraes ÂM (2015) Properties of films obtained from biopolymers of different origins for skin lesions therapy. Braz Arch Biol Technol 58:289–299

    Article  CAS  Google Scholar 

  118. Jermy BR, Ravinayagam V, Akhtar S, Alamoudi WA, Alhamed NA, Baykal A (2018) Magnetic mesocellularfoam functionalized by curcumin for potential multifunctional therapeutics. J Supercond Nov Magn 32:2077–2090

    Article  Google Scholar 

  119. Shao M, Hussain Z, Thu HE, Khan S, de Matas M, Silkstone V, Qin HL, Bukhari SNA (2017) Emerging trends in therapeutic algorithm of chronic wound healers: recent advances in drug delivery systems, concepts-to-clinical application and future prospects. Crit Rev Ther Drug Carrier Syst 34:387–452

    Article  PubMed  Google Scholar 

  120. Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Toit LCDU, Pillay V (2014) A comprehensivereview of advanced biopolymericwound. J Pharm Sci 103:2211–2230

    Article  CAS  PubMed  Google Scholar 

  121. Falanga V, Faria K, Bollenbach T (2013) In: Lanza RP, Langer R, Vacanti J (eds) Principal tissue engineering, 4th Edn. Elsevier

  122. Parwani L, Bhatnagar M, Bhatnagar A, Sharma V, Sharma V (2016) Evaluation of Moringa oleifera seed biopolymer-PVA composite hydrogel in wound healing dressing. Iran Polym J 25:919–931

    Article  CAS  Google Scholar 

  123. Huang W, Wang Y, Huang Z, Wang X, Chen L, Zhang Y, Zhang L (2018) On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl Mater Interfaces 10:41076–41088

    Article  CAS  PubMed  Google Scholar 

  124. Bertsch P, Schneider L, Bovone G, Tibbitt MW, Fischer P, Gstöhl S (2019) Injectable biocompatible hydrogels from cellulose nanocrystals for locally targeted sustained drug release. ACS Appl Mater Interfaces 11:38578–38585

    Article  CAS  PubMed  Google Scholar 

  125. Li Z, Zhou F, Li Z, Lin S, Chen L, Liu L, Chen Y (2018) Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Interfaces 10:25194–25202

    Article  CAS  PubMed  Google Scholar 

  126. Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, Chang C, Wei Y, Zhang L (2017) Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv Funct Mater 27:1703174

    Article  Google Scholar 

  127. Khamrai M, Banerjee SL, Kundu PP (2017) Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydr Polym 174:580–590

    Article  CAS  PubMed  Google Scholar 

  128. Zhu C, Zhao J, Kempe K, Wilson P, Wang J, Velkov T, Li J, Davis TP, Whittaker MR, Haddleton DM (2017) A hydrogel-based localized release of Colistin for antimicrobial treatment of burn wound infection. Macromol Biosci 17:1600320

    Article  Google Scholar 

  129. Palem RR, Madhusudana RK, Kang TJ (2019) Self-healable and dual-functional guar gum-grafted-polyacrylamidoglycolic acid-based hydrogels with nano-silver for wound dressings. Carbohydr Polym 223:115074

    Article  CAS  PubMed  Google Scholar 

  130. Baiguera S, Del C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B, Bianco A, Macchiarini P (2014) Biomaterials electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35:1205–1214

    Article  CAS  PubMed  Google Scholar 

  131. Chohan MO (2020) Deconstructing neurogenesis, transplantation and genome-editing as neural repair strategies in brain disease. Front Cell Dev Biol 2020:8

    Google Scholar 

  132. Wei Z, Zhao J, Chen YM, Zhang P, Zhang Q (2016) Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Nat Publ Gr 6:1–12

    CAS  Google Scholar 

  133. Tseng T, Tao L, Hsieh F, Wei Y, Chiu I, Hsu S (2015) An injectable self-healing hydrogel to repair the central nervous system. Adv Polym 27:3518–3524

    CAS  Google Scholar 

  134. Koutsopoulos S, Zhang S (2013) Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I. Acta Biomater 9:5162–5169

    Article  CAS  PubMed  Google Scholar 

  135. Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A (2017) Viability and neuronal differentiation of neural stem cells encapsulated in silk fi broin hydrogel functionalized with an IKVAV peptide. J Tissue Eng Regen Med 11:1532–1541

    Article  CAS  PubMed  Google Scholar 

  136. Cheng T, Chen M, Chang W, Huang M, Wang T (2016) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34:2005–2016

    Article  Google Scholar 

  137. Wollenberg AL, Shea TMO, Kim JH, Czechanski A, Reinholdt LG, Sofroniew MV, Deming TJ (2018) Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery. Biomaterials 178:527–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. NatRev Mater 1:1–38

    Google Scholar 

  139. Zhao D, Tang Q, Zhou Q, Peng K, Yang H, Zhang X (2018) A photo-degradable injectableself-healing hydrogel based on star poly(ethyleneglycol)-b-polypeptide as a potential pharmaceuticals delivery carrier. Soft Matt 14:7420–7428

    Article  CAS  Google Scholar 

  140. Chen M, Tian J, Liu Y, Cao H, Li R, Wang J, Wu J, Zhang Q (2019) Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. ChemEng J 373:413–424

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by CONACYT A1-S-15759 to Gerardo Leyva-Gómez. This research received financial support provided by Dirección General de Asuntos del Personal Académico from the Universidad Nacional Autónoma de México (DGAPA-UNAM) through the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT); Project Grant: PAPIIT-TA200520. Figures 1, 4 and 8 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Leyva-Gómez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Prado-Audelo, M.L., Caballero-Florán, I.H., Mendoza-Muñoz, N. et al. Current progress of self-healing polymers for medical applications in tissue engineering. Iran Polym J 31, 7–29 (2022). https://doi.org/10.1007/s13726-021-00943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00943-8

Keywords

Navigation