Skip to main content
Log in

Magnetic Mesocellular Foam Functionalized by Curcumin for Potential Multifunctional Therapeutics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The study investigates curcumin/SPIONs hybridized mesocellular foam type silica for potential dual purpose of drug delivery (curcumin) and magnetic resonance imaging. Magnetization capability and curcumin release was assessed for different structured silica such as spherical silica (Q-10), Si-MCM-41, Si-SBA-16, mesocellular foam (MSU-Foam), Si-KIT-6, ULPFDU-12, and silicalite. The phase, textural, and morphological variation was systematically scrutinized using various physico-chemical techniques. Ten weight percent SPIONs loading was found to generate magnetically active SPIONs in the following order: Q-10 (1.44 emu/g) > SBA-16 (0.80 emu/g) > MSU-Foam (0.24 emu/g) > Si-MCM-41 (0.07 emu/g) > Si-KIT-6 (0.07 emu/g) > silicalite (0.08 emu/g), respectively. The iron oxide dispersion, specific surface area, and porosity play a major role in various structured silicas. MSU-Foam with wormhole structure showed highest specific surface area occupation of SPIONs (73%). The presence of interconnected porosity of foam tends to generate external agglomeration of SPIONs (7–18 nm) at the pore surface contributing to expansion of pore sizes from 16.4 to 40.2 nm. The SPIONs over spherical micron-sized silica Q-10 showed the formation of large nanoclusters (10–25 nm). Thirty to 390 μg/ml of curcumin was loaded over silica and SPIONs/silica structured hybrid, and drug release was studied at pH 5.6 for 72 h. SPIONs/MSU-Foam with less magnetization showed the highest cumulative curcumin release (53.2%), while Q-10 spherical silica with high magnetization property showed less cumulative release of curcumin (12%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Cole, J.T., Holland, N.B.: Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Transl. Res. 5, 295–309 (2015)

    Article  Google Scholar 

  2. Ravinayagam, V., Jermy, R.B.: Studying the loading effect of acidic type antioxidant on amorphous silica nanoparticle carriers. J. Nanopart. Res. 19, 190 (2017)

    Article  ADS  Google Scholar 

  3. Mulik, R.S., Monkkonen, J., Juvonen, R.O., Mahadik, K.R., Paradkar, A.R.: Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm. 398, 190–203 (2010)

    Article  Google Scholar 

  4. Jambhrunkar, S., Karmakar, S., Popat, A., Yu, M., Yu, C.: Mesoporous silica nanoparticles enhance thecytotoxicity of curcumin. RSC Adv. 4, 709–712 (2014)

    Article  Google Scholar 

  5. He, Q., Shi, J., Chen, F., Zhu, M., Zhang, L.: An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials. 31, 3335–3346 (2010)

    Article  Google Scholar 

  6. Slowing, I.I., Vivero-Escoto, J.L., Wu, C.W., Lin, V.S.: Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)

    Article  Google Scholar 

  7. Kwon, S., Singh, R.K., Perez, P.A., Abou Neel, E.A., Kim, H.W., Chrzanowski, W.: Silica-based mesoporous nanoparticles for controlled drug delivery. J. Tissue Eng. 4, 2041731413503357 (2013)

    Article  Google Scholar 

  8. Baek, J.-S., Cho, C.-W.: Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur. J. Pharm. Biopharm. 117, 132–140 (2017)

    Article  Google Scholar 

  9. Mutalik, S., Suthara, N.A., Managuli, R.S., Shetty, P.K., Avadhani, K., Kalthur, G., Kulkarni, R.V., Thomas, R.: Development and performance evaluation of novel nanoparticles of agrafted copolymer loaded with curcumin. Int. J. Biol. Macromol. 86, 709–720 (2016)

    Article  Google Scholar 

  10. Howell, M., Wang, C., Mahmoud, A., Hellermann, G., Mohapatra, S.S., Mohapatra, S.: Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv. Transl. Res. 3, 352–363 (2013)

    Article  Google Scholar 

  11. Estelrich, J., Escribano, E., Queralt, J., Busquets, M.A.: Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 16, 8070–8101 (2015)

    Article  Google Scholar 

  12. Almeida, E.A.M.S., Bellettini, I.C., Garcia, F.P., Farinácio, M.T., Nakamura, C.V., Rubira, A.F., Martins, A.F., Muniz, E.C.: Curcumin-loaded dual pH- and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery. Carbohydr. Polym. 171, 259–266 (2017)

    Article  Google Scholar 

  13. Huang, S., Li, C., Cheng, Z., Fan, Y., Yang, P., Zhang, C., Yang, K., Lin, J.: Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. J. Colloid Interface Sci. 376, 312–321 (2012)

    Article  ADS  Google Scholar 

  14. Tian, Z., Yu, X., Ruan, Z., Zhu, M., Zhu, Y., Hanagata, N.: Magnetic mesoporous silica nanoparticles coated with thermo-responsive copolymer for potential chemo- and magnetic hyperthermia therapy. Microporous Mesoporous Mater. 256, 1–9 (2018)

    Article  Google Scholar 

  15. Yiu, H.H.P., Niu, H.J., Biermans, E., vanTendeloo, G., Rosseinsky, M.J.: Designed multifunctional nanocomposites for biomedical applications. Adv. Funct. Mater. 20, 1–11 (2010)

    Article  Google Scholar 

  16. Lachowicz, D., Szpak, A., Zietekc, K.E.M., Kepczynski, M., Mullerd, R.N., Laurent, S., Nowakowska, M., Zapotoczny, S.: Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives. Colloids Surf. B: Biointerfaces. 150, 402–407 (2017)

    Article  Google Scholar 

  17. Wang, F., Hui, H., Barnes, T., Barnett, C., Prestidge, C.: Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol. Pharm. 7, 227–236 (2009)

    Article  Google Scholar 

  18. Hu, Y., Zhi, Z., Zhao, Q., Wu, C., Zhao, P., Jiang, H., Jiang, T., Wang, S.: 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater. 147, 94–101 (2012)

    Article  Google Scholar 

  19. Schmidt, W.P., Glinka, C.J., Stucky, G.D.: Microemulsion templates for mesoporous silica. Langmuir. 16, 356–361 (2000)

    Article  Google Scholar 

  20. Cuello, N.I., Elías, V.R., Mendieta, S.N., Longhi, M., Crivello, M.E., Oliva, M.I., Eimer, G.A.: Drug release profiles of modified MCM-41 with superparamagnetic behavior correlated with the employed synthesis method. Mater. Sci. Eng. C. 78, 674–681 (2017)

    Article  Google Scholar 

  21. Wang, Y., Zhang, Q., Shishido, T., Takehira, K.: Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J. Catal. 209, 186–196 (2002)

    Article  Google Scholar 

  22. Cuello, N., Elias, V., Urreta, S., Oliva, M., Eimer, G.: Microstructure and magnetic properties of iron modified mesoporous silica obtained by one step direct synthesis. Mater. Res. Bull. 48, 3559–3563 (2013)

    Article  Google Scholar 

  23. Lu, Y., Zheng, J., Liu, J., Mu, J.: Fe-containing mesoporous silicates with macro-lamellar morphology. Microporous. Mesoporous Mater. 106, 28–34 (2007)

    Article  Google Scholar 

  24. Bhandari, R., Gupta, P., Dziubla, T., Zach, H.J.: Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Mater. Sci. Eng. C. 67, 59–64 (2016)

    Article  Google Scholar 

  25. Mohan, P.R.K., Sreelakshmi, G., Muraleedharan, C.V., Joseph, R.: Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62, 77–84 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The assistance of Ms. Hanan Aldossary, Institute for Research and Medical Consultations (IRMC), IAU, is highly appreciated. The authors acknowledge IRMC, IAU for providing sample characterization facilities. Ms. Nada A. Alhamed would like to thank IRMC, IAU for giving the opportunity to work under the scheme of volunteer program.

Funding

The authors B.R. Jermy and V. Ravinayagam was supported by a grant from Deanship of Scientific Research (2016-099-IRMC and 2017-111-DSR), Imam Abdulrahman Bin Faisal University (IAU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Rabindran Jermy or A. Baykal.

Electronic Supplementary Material

Fig. S1

(DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jermy, B.R., Ravinayagam, V., Akhtar, S. et al. Magnetic Mesocellular Foam Functionalized by Curcumin for Potential Multifunctional Therapeutics. J Supercond Nov Magn 32, 2077–2090 (2019). https://doi.org/10.1007/s10948-018-4921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4921-3

Keywords

Navigation