Skip to main content
Log in

The molecular mechanism of the thermo-responsive shape memory effect of self-assembled poly-{2,5-bis[(4-butoxyphenyl)oxycarbonyl]styrene} fiber

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A new molecular mechanism is proposed to explain the shape memory effect of mesogen-jacketed liquid crystalline polymer fiber—poly-{2,5-bis[(4-butoxyphenyl)oxycarbonyl]styrene} (PBPCS) fiber-designed in the molecular level. Due to the strong “coupling effect” between flexible backbone and rigid side mesogens, the molecular structure of PBPCS can be regarded as “dual chains” model that is constituted by a flexible backbone chain and a rigid side chain in parallel. The flexible backbone chains are reversible above the transition temperature and act as a switch structure, the physically cross-linked points caused by the π–π weak interactions between rigid side mesogens are responsible for memorizing a shape function and act as a fixing structure; therefore, the switch structure (flexible backbone) and the fixing structure (rigid mesogens) are found in each macromolecular chain. Furthermore, the shape memory behavior of PBPCS fibers is discussed by a viscoelastic molecular model consisting of two Maxwell models in parallel, the obtained theoretical values by “dual chains” model was in agreement with experimental results, very well. The viscoelastic molecular model described for shape memory process was correlated to the molecular mechanism explained for shape memory effect. This work provides a new idea and significant approach for design of new shape memory polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Design 33:577–640

    Article  CAS  Google Scholar 

  2. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  3. Bellamkonda RV (2008) Biomimetic materials: marine inspiration. Nat Mater 7:347–348

    Article  CAS  Google Scholar 

  4. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  CAS  Google Scholar 

  5. Rousseau IA, Mather PT (2003) Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J Am Chem Soc 125:15300–15301

    Article  CAS  Google Scholar 

  6. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  7. Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H (2012) Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 72:1178–1182

    Article  CAS  Google Scholar 

  8. Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  9. Scott TF, Schneider AD, Cook WD, Bowman CN (2005) Photoinduced plasticity in cross-linked polymers. Science 308:1615–1617

    Article  CAS  Google Scholar 

  10. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103:3540–3545

    Article  CAS  Google Scholar 

  11. Schmidt AM (2006) Electromagnetic activation of a shape memory polymer containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  CAS  Google Scholar 

  12. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  CAS  Google Scholar 

  13. Meng QH, Hu JL (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40:1661–1672

    Article  Google Scholar 

  14. Zhang H, Wang HT, Zhong W, Du QG (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50:1596–1601

    Article  CAS  Google Scholar 

  15. Tobushi H, Okumura K, Hayashi S, Ito N (2001) Thermomechanical constitutive model of shape memory polymer. Mech Mater 33:545–554

    Article  Google Scholar 

  16. Inomata K, Nakagawa K, Fukuda C, Nakada Y, Sugimoto H, Nakanishi E (2010) Shape memory behavior of poly(methyl methacrylate)-graft-poly(ethylene glycol) copolymers. Polymer 51:793–798

    Article  CAS  Google Scholar 

  17. Zhai L (2013) Stimuli-responsive polymer films. Chem Soc Rev 42:7148–7160

    Article  CAS  Google Scholar 

  18. Yan X, Wang F, Zheng B, Huan F (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41:6042–6065

    Article  CAS  Google Scholar 

  19. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952–9986

    Article  Google Scholar 

  20. Wu XL, Huang WM, Tan HX (2013) Characterization of shape recovery via creeping and shape memory effect in ether-vinyl acetate copolymer (EVA). J Polym Res 20(150–16):1

    Google Scholar 

  21. Qi HJ, Nguyen TD, Castro F, Yakacki CM, Shandas R (2008) Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J Mech Phys Solids 56:1730–1751

    Article  CAS  Google Scholar 

  22. Li G, Xu W (2011) Thermomechanical behavior of thermoset shape memory polymer programmed by cold compression: testing and constitutive modeling. J Mech Phys Solids 59:1231–1250

    Article  CAS  Google Scholar 

  23. Julich-Gruner KK, Löwenberg C, Neffe AT, Behl M, Lendlein A (2013) Recent trends in the chemistry of shape-memory polymers. Macromol Chem Phys 214:527–536

    Article  CAS  Google Scholar 

  24. Berg GJ, McBride MK, Wang C, Bowman CN (2014) New directions in the chemistry of shape memory polymers. Polymer 55:5849–5872

    Article  CAS  Google Scholar 

  25. Kempaiah R, Nie Z (2014) From nature to synthetic systems: shape trans-formation in soft materials. J Mater Chem B 2:2357–2368

    Article  CAS  Google Scholar 

  26. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    Article  CAS  Google Scholar 

  27. Katzenberg F, Heuwers B, Tiller JC (2011) Superheated rubber for cold storage. Adv Mater 23:1909–1911

    Article  CAS  Google Scholar 

  28. Zhao J, Chen M, Wang X, Zhao X, Wang Z, Dang Z-M, Ma L, HuG-H Chen F (2013) Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl Mater Interfaces 5:5550–5556

    Article  CAS  Google Scholar 

  29. Zhou QF, Li AM, Feng XD (1987) Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules 20:233–234

    Article  CAS  Google Scholar 

  30. Zhou QF, Zhu XL, Wen ZQ (1989) Liquid-crystalline side-chain polymer without flexible spacer. Macromolecules 22:491–493

    Article  CAS  Google Scholar 

  31. Wang P, Chai CP, Chuai YT, Wang FZ, Chen XF, Fan XH, Xu YD, Zou DC, Zhou QF (2007) Blue light-emitting diodes from mesogen-jacketed polymers containing oxadiazole units. Polymer 48:5889–5895

    Article  CAS  Google Scholar 

  32. Ping J, Qiao Y, Tian H, Shen Z, Fan X (2015) Synthesis and properties of a coil-g-rod polymer brush by combination of ATRP and alternating copolymerization. Macromolecules 48:592–599

    Article  CAS  Google Scholar 

  33. Zhu YF, Zhang ZY, Zhang QK, Hou PP, Hao DZ, Qiao YY, Shen Z, Fan XH, Zhou QF (2014) Mesogen-jacketed liquid crystalline polymers with a polynorbornene main-chain: green synthesis and phase behaviors. Macromolecules 47:2803–2810

    Article  CAS  Google Scholar 

  34. Chen S, Zhang LY, Gao LC, Chen XF, Fan XH, Shen ZH, Zhou QF (2009) Influence of alkoxy tail length and unbalanced mesogenic core on phase behavior of mesogen-jacketed liquid crystalline polymers. J Polym Sci A Polym Chem 47:505–514

    Article  CAS  Google Scholar 

  35. Zhang QK, Tian HJ, Li CF, Zhu YF, Liang YR, Shen Z, Fan XH (2014) Synthesis and phase behavior of a new 2-vinylbiphenyl-based mesogen-jacketed liquid crystalline polymer with high glass transition temperature and low threshold molecular weight. Polym Chem 5:4526–4533

    Article  CAS  Google Scholar 

  36. Pan QW, Chen XF, Fan XG, Shen ZH, Zhou QF (2008) Organic–inorganic hybrid bent-core liquid crystals with cubic silsesquioxane cores. J Mater Chem 18:3481–3488

    Article  CAS  Google Scholar 

  37. Li DL, Chen WP, Fan XH, Cheng YH, Wan LY, Zhao XD, Xu YD, Shen ZH, Zhu MF, Zhou QF (2009) Shape memory effect of mesogen-jacketed liquid crystal polymer fiber. Acta Polym Sin 10:1012–1017

    Article  Google Scholar 

  38. Maksimkin A, Kaloshkin S, Zadorozhnyy M, Tcherdyntsev V (2014) Comparison of shape memory effect in UHMWPE for bulk and fiber state. J Alloys Compd 586:214–217

    Article  Google Scholar 

  39. Li G, Shojaei A (2012) A viscoplastic theory of shape memory polymer fibers with application to self-healing materials. Proc R Soc A 468:2319–2346

    Article  CAS  Google Scholar 

  40. Shojaei A, Li G, Voyiadjis GZ (2012) Cyclic viscoplastic-viscodamage analysis of shape memory polymer fibers with application to self-healing smart materials. J Appl Mech Trans ASME 80:011014–011029

    Article  Google Scholar 

  41. Shojaei A, Li G (2014) Thermomechanical constitutive modeling of shape memory polymer including continuum functional and mechanical damage effects. Proc Math Phys Eng Sci 470:20140199

    Article  Google Scholar 

  42. Zhao YF, Fan XH, Wan XH, Chen XF, Yi Y, Wang LS, Dong X, Zhou QF (2006) Unusual phase behavior of a mesogen-jacketed liquid crystalline polymer synthesized by atom transfer radical polymerization. Macromolecules 39:948–956

    Article  CAS  Google Scholar 

  43. Lendlein A, Kelch S (2002) Shape memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  44. Lin JR, Chen LW (1999) The mechanical-viscoelastic model and WLF relationship in shape memorized linear ether-type polyurethanes. J Polym Res 6:35–40

    Article  CAS  Google Scholar 

  45. Lin JR, Chen LW (1999) Shape-memorized cross-linked ester-type polyurethane and its mechanical viscoelastic model. J Appl Polym Sci 73:1305–1319

    Article  CAS  Google Scholar 

  46. Shen Y, Chen EQ, Ye C, Zhang HL, Wu PY, Noda I, Zhou QF (2005) Liquid-crystalline phase development of a mesogen-jacketed polymer application of two-dimensional infrared correlation analysis. J Phys Chem B 109:6089–6095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by Scientific Research Fund of Jiangxi Province (CA201301092), and the National Natural Science Foundation of China (No. 51463016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ying Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, LY., Han, RM. & Wan, ZH. The molecular mechanism of the thermo-responsive shape memory effect of self-assembled poly-{2,5-bis[(4-butoxyphenyl)oxycarbonyl]styrene} fiber. Iran Polym J 25, 79–88 (2016). https://doi.org/10.1007/s13726-015-0403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0403-7

Keywords

Navigation