Skip to main content
Log in

Early Infant Nutrition and Metabolic Programming: What Are the Potential Molecular Mechanisms?

  • Prenatal, Neonatal, and Maternal Nutrition (DK Tobias and M-F Hivert, Section Editors)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

The developmental origins of health and disease hypothesis contend that fetal and early postnatal environmental factors, in particular nutrition, influence long-term health in offspring. Accumulating evidence in humans show that fetal under- and over-nutrition induce long-term changes in gene expression and influence phenotypes in the offspring through epigenetic modifications. As such, epigenetics has received important attention for its potential role in health and disease programming. However, much less is known regarding the mechanisms underlying early postnatal nutrition programming of long-term health. Breast milk is known to be the best source of nutrition for infants. It contains many bioactive constituents that are able to induce changes in DNA methylation pattern. This review will present potential molecular mechanisms through which early postnatal nutrition may influence health and disease programming, focusing on research that used “-omics” approaches (i.e., epigenomics, transcriptomics, proteomics, and metabolomics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Koletzko B, Brands B, Poston L, Godfrey K, Demmelmair H. Early Nutrition Project. Early nutrition programming of long-term health. Proc Nutr Soc. 2012;71(3):371–8.

    Article  PubMed  Google Scholar 

  4. Godfrey KM, Gluckman PD, Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab: TEM. 2010;21(4):199–205.

    Article  CAS  PubMed  Google Scholar 

  5. Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab. 2012;26(5):641–53. This article presents important evidence supporting that the quantity and quality of early postnatal nutrition plays a critical role in the long-term programming of health and disease.

    Article  PubMed  Google Scholar 

  6. Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas. 2011;70(2):141–5.

    Article  PubMed  Google Scholar 

  7. Battista MC, Hivert MF, Duval K, Baillargeon JP. Intergenerational cycle of obesity and diabetes: how can we reduce the burdens of these conditions on the health of future generations? Exp Diabetes Res. 2011;2011:596060.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Plagemann A, Harder T. Breast feeding and the risk of obesity and related metabolic diseases in the child. Metab Syndr Relat Disord. 2005;3(3):222–32.

    Article  PubMed  Google Scholar 

  9. Arenz S, Ruckerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity–a systematic review. Int J Obes Relat Metab Disord. 2004;28(10):1247–56.

    Article  CAS  PubMed  Google Scholar 

  10. Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115(5):1367–77.

    Article  PubMed  Google Scholar 

  11. Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, Michaelsen KF, et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2009;49(1):112–25.

    Article  PubMed  Google Scholar 

  12. Gillman MW. Commentary: breastfeeding and obesity–the 2011 Scorecard. Int J Epidemiol. 2011;40(3):681–4.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Harder T, Bergmann R, Kallischnigg G, Plagemann A. Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol. 2005;162(5):397–403.

    Article  PubMed  Google Scholar 

  14. McCrory C, Layte R. Breastfeeding and risk of overweight and obesity at nine-years of age. Soc Sci Med. 2012;75(2):323–30.

    Article  PubMed  Google Scholar 

  15. Owen CG, Whincup PH, Odoki K, Gilg JA, Cook DG. Infant feeding and blood cholesterol: a study in adolescents and a systematic review. Pediatrics. 2002;110(3):597–608.

    Article  PubMed  Google Scholar 

  16. Owen CG, Whincup PH, Gilg JA, Cook DG. Effect of breast feeding in infancy on blood pressure in later life: systematic review and meta-analysis. BMJ. 2003;327(7425):1189–95.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am J Clin Nutr. 2006;84(5):1043–54.

    CAS  PubMed  Google Scholar 

  18. Davis MK. Breastfeeding and chronic disease in childhood and adolescence. Pediatr Clin N Am. 2001;48(1):125–41. ix.

    Article  CAS  Google Scholar 

  19. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32.

    Article  CAS  PubMed  Google Scholar 

  20. Henikoff S, Matzke MA. Exploring and explaining epigenetic effects. Trends Genet. 1997;13(8):293–5.

    Article  CAS  PubMed  Google Scholar 

  21. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  22. Murphy SK, Huang Z, Hoyo C. Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues. PLoS One. 2012;7(7):e40924.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wong CC, Caspi A, Williams B, Craig IW, Houts R, Ambler A, et al. A longitudinal study of epigenetic variation in twins. Epigenetics. 2010;5(6):516–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J off Publ Fed Am Soc Exp Biol. 2010;24(9):3135–44.

    CAS  Google Scholar 

  27. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Chen Q, Tsai HJ, Wang G, Hong X, Zhou Y, et al. Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen. 2014;55(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  29. Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond). 2013.

  30. Bouchard L, Hivert M-F, Guay S-P, St-Pierre J, Perrron P, Brisson D. Placental Adiponectin Gene DNA Methylation Levels Are Associated with Mothers’ Blood Glucose Concentration. Diabetes. 2012;61(5):1272–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bouchard L, Thibault S, Guay SP, Santure M, Monpetit A, St-Pierre J, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33(11):2436–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Houde AA, Guay SP, Desgagne V, Hivert MF, Baillargeon JP, St-Pierre J, et al. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics. 2013;8(12):1289–302.

    Article  CAS  PubMed  Google Scholar 

  33. Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, et al. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics. 2013;8(9):935–43. This epigenome-wide study suggests that fetal over-nutrition occurring during gestational diabetes mellitus modifies DNA methylation levels at genes that are preferentially involved in metabolic diseases.

    Article  CAS  PubMed  Google Scholar 

  34. El Hajj N, Pliushch G, Schneider E, Dittrich M, Muller T, Korenkov M, et al. Metabolic Programming of MEST DNA Methylation by Intrauterine Exposure to Gestational Diabetes Mellitus. Diabetes. 2013;62(4):1320–8.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 2010;6(12):e1001252.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5:3746.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hoyo C, Murtha AP, Schildkraut JM, Jirtle RL, Demark-Wahnefried W, Forman MR, et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics. 2011;6(7):928–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One. 2009;4(11):e7845.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Khulan B, Cooper WN, Skinner BM, Bauer J, Owens S, Prentice AM, et al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum Mol Genet. 2012;21(9):2086–101. This study provides important data suggesting that DNA methylation changes may occur postnatally, suggesting that early postnatal life conditions are critical to epigenetic programming.

    Article  CAS  PubMed  Google Scholar 

  40. Robinson S, Fall C. Infant nutrition and later health: a review of current evidence. Nutrients. 2012;4(8):859–74.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Hamosh M. Bioactive factors in human milk. Pediatr Clin N Am. 2001;48(1):69–86.

    Article  CAS  Google Scholar 

  42. Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, et al. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One. 2013;8(2):e50564. This article reports that breastmilk contains a large amount of miRNAs and that these microRNAs may be a potential molecular mechanism explaining the health benefits of breastfeeding for infants.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1(1):7.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Milagro FI, Mansego ML, De Miguel C, Martinez JA. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med. 2013;34(4):782–812.

    Article  CAS  Google Scholar 

  45. Choi SW, Friso S. Epigenetics: A New Bridge between Nutrition and Health. Adv Nutr. 2010;1(1):8–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278(10):1598–609.

    Article  CAS  PubMed  Google Scholar 

  47. Kleiblova P, Dostalova I, Bartlova M, Lacinova Z, Ticha I, Krejci V, et al. Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol Cell Endocrinol. 2010;314(1):150–6.

    Article  CAS  PubMed  Google Scholar 

  48. Casabiell X, Pineiro V, Tome MA, Peino R, Dieguez C, Casanueva FF. Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J Clin Endocrinol Metab. 1997;82(12):4270–3.

    Article  CAS  PubMed  Google Scholar 

  49. Vickers MH, Sloboda DM. Leptin as mediator of the effects of developmental programming. Best Pract Res Clin Endocrinol Metab. 2012;26(5):677–87.

    Article  CAS  PubMed  Google Scholar 

  50. Obermann-Borst SA, Eilers PH, Tobi EW, de Jong FH, Slagboom PE, Heijmans BT, et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res. 2013;74(3):344–9. This study suggests that breastfeeding may modulate methylation pattern at the LEP gene promoter in the infant and thereby contribute to the programming of leptin and body weight regulation.

    Article  CAS  PubMed  Google Scholar 

  51. Savino F, Liguori SA, Benetti S, Sorrenti M, Fissore MF. Cordero di Montezemolo L. High serum leptin levels in infancy can potentially predict obesity in childhood, especially in formula-fed infants. Acta Paediatr. 2013;102(10):e455–9.

    Article  CAS  PubMed  Google Scholar 

  52. Savino F, Liguori SA, Fissore MF, Palumeri E, Calabrese R, Oggero R, et al. Looking for a relation between serum leptin concentration and body composition parameters in healthy term infants in the first 6 months of life. J Pediatr Gastroenterol Nutr. 2008;46(3):348–51.

    Article  CAS  PubMed  Google Scholar 

  53. Savino F, Liguori SA, Oggero R, Silvestro L, Miniero R. Maternal BMI and serum leptin concentration of infants in the first year of life. Acta Paediatr. 2006;95(4):414–8.

    Article  PubMed  Google Scholar 

  54. Doneray H, Orbak Z, Yildiz L. The relationship between breast milk leptin and neonatal weight gain. Acta Paediatr. 2009;98(4):643–7.

    Article  CAS  PubMed  Google Scholar 

  55. Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, et al. Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011;94(6 Suppl):1776S–84S. This study suggests that early protein intake affects the infant’s metabolome and IGF-I axis, with potential effects on the long-term health in the children.

    Article  CAS  PubMed  Google Scholar 

  56. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009;89(6):1836–45.

    Article  CAS  PubMed  Google Scholar 

  57. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity. 2013;8(1):52–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2013;9(6):346–56.

    Article  CAS  PubMed  Google Scholar 

  60. Inostroza J, Haschke F, Steenhout P, Grathwohl D, Nelson SE, Ziegler EE. Low-Protein Formula Slows Weight Gain in Infants of Overweight Mothers: A Randomized Trial. Journal of pediatric gastroenterology and nutrition. 2014.

  61. Martin RM, Holly JM, Smith GD, Ness AR, Emmett P, Rogers I, et al. Could associations between breastfeeding and insulin-like growth factors underlie associations of breastfeeding with adult chronic disease? The Avon Longitudinal Study of Parents and Children. Clin Endocrinol (Oxf). 2005;62(6):728–37.

    Article  Google Scholar 

  62. Martin FP, Moco S, Montoliu I, Collino S, Da Silva L, Rezzi S, et al. Impact of breast-feeding and high- and low-protein formula on the metabolism and growth of infants from overweight and obese mothers. Pediatr Res. 2014;75(4):535–43. This article suggests a link between early protein intake and the establishment of the infant’s metabolome.

    Article  CAS  PubMed  Google Scholar 

  63. Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes. 2009;58(11):2429–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Robles Alonso V, Guarner F. Linking the gut microbiota to human health. Br J Nutr. 2013;109 Suppl 2:S21–6.

    Article  CAS  PubMed  Google Scholar 

  65. Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011;157(Pt 5):1385–92.

    Article  CAS  PubMed  Google Scholar 

  66. Bergstrom A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, et al. Establishment of Intestinal Microbiota during Early Life: a Longitudinal, Explorative Study of a Large Cohort of Danish Infants. Appl Environ Microbiol. 2014;80(9):2889–900.

    Article  CAS  PubMed  Google Scholar 

  67. Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.

    Article  Google Scholar 

  68. Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534–8.

    CAS  PubMed  Google Scholar 

  69. Houde AA, Legare C, Hould FS, Lebel S, Marceau P, Tchernof A, et al. Cross-tissue comparisons of leptin and adiponectin: DNA methylation profiles. Adipocyte. 2014;3(2):132–40.

    Article  PubMed  Google Scholar 

  70. Koletzko B, Symonds ME, Olsen SF. Early Nutrition Programming Project; Early Nutrition Academy. Programming research: where are we and where do we go from here? Am J Clin Nutr. 2011;94(6 Suppl):2036S–43S. This article reviews current knowledge about early nutrition programming, identifies some key issues that need to be resolved, and describes opportunities for future research.

Download references

Acknowledgments

SMR is recipient of a postdoctoral fellowship from the Canadian Diabetes Association (CDA). LB and MFH are junior research scholars from the Fonds de la Recherche du Québec - Santé (FRQ-S). MFH has received a Clinical Scientist Award by the CDA and the Maud Menten Award from the Institute of Genetics–Canadian Institute of Health Research. L.B. is a member of the FRSQ-funded Centre de recherche du Centre hospitalier universitaire de Sherbrooke.

Compliance with Ethics Guidelines

Conflict of Interest

Stephanie-May Ruchat, Luigi Bouchard, and Marie-France Hivert declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving human subjects were performed after approval by the appropriate Institutional Review Boards. Written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie-May Ruchat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruchat, SM., Bouchard, L. & Hivert, MF. Early Infant Nutrition and Metabolic Programming: What Are the Potential Molecular Mechanisms?. Curr Nutr Rep 3, 281–288 (2014). https://doi.org/10.1007/s13668-014-0088-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-014-0088-0

Keywords

Navigation