Skip to main content

Nutrition in Early Life, Epigenetics, and Health

  • Chapter
  • First Online:
Epigenetics, the Environment, and Children’s Health Across Lifespans

Abstract

Access to nutrition in the perinatal stage or early childhood has pronounced influence on later development and health outcomes in adolescence and adulthood. Total energy intake and a variety of dietary components, such as protein, folate, choline, curcumin, and polyphenols consumed in early life, have been shown to modify indicators of chronic diseases such as obesity, diabetes, and cardiovascular disease. These dietary components interact with epigenetic regulation. By altering DNA methylation and histone modifications, dietary exposures in early life affect the transcription of genes related to somatic growth, appetite control, stress response, and adiposity which precedes various chronic diseases. This chapter will introduce the existing human and animal evidence which supports the interaction between nutrition and epigenetics in early life and its lasting impacts on health and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken, C. E., & Ozanne, S. E. (2013). Sex differences in developmental programming models. Reproduction, 145, R1–R13.

    Article  PubMed  CAS  Google Scholar 

  • Altobelli, G., Bogdarina, I. G., Stupka, E., Clark, A. J., & Langley-Evans, S. (2013). Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid. PLoS One, 8, e82989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baker, J. L., Olsen, L. W., & Sørensen, T. I. (2008). Weight at birth and all-cause mortality in adulthood. Epidemiology, 19, 197–203.

    Article  PubMed  Google Scholar 

  • Barker, D. J., & Osmond, C. (1988). Low birth weight and hypertension. BMJ, 297, 134–135.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barker, D. J., Winter, P. D., Osmond, C., Margetts, B., & Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 2, 577–580.

    Article  PubMed  CAS  Google Scholar 

  • Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D'Udine, B., Foley, R. A., et al. (2004). Developmental plasticity and human health. Nature, 430, 419–421.

    Article  PubMed  CAS  Google Scholar 

  • Begum, G., Davies, A., Stevens, A., Oliver, M., Jaquiery, A., Challis, J., et al. (2013). Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology, 154, 4560–4569.

    Article  PubMed  CAS  Google Scholar 

  • Bertolo, R. F., & McBreairty, L. E. (2013). The nutritional burden of methylation reactions. Current Opinion in Clinical Nutrition and Metabolic Care, 16, 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, C. E., Gillman, M. W., Hughes, M. D., Rifas-Shiman, S. L., Villamor, E., & Oken, E. (2013). Choline intake during pregnancy and child cognition at age 7 years. American Journal of Epidemiology, 177, 1338–1347.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brameld, J. M., Mostyn, A., Dandrea, J., Stephenson, T. J., Dawson, J. M., Buttery, P. J., et al. (2000). Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle. The Journal of Endocrinology, 167, 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Brandeis, M., Kafri, T., Ariel, M., Chaillet, J. R., McCarrey, J., Razin, A., et al. (1993). The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. The EMBO Journal, 12, 3669–3677.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brenseke, B., Prater, M. R., Bahamonde, J., & Gutierrez, J. C. (2013). Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. Journal of Pregnancy, 2013, 368461.

    Article  PubMed Central  PubMed  Google Scholar 

  • Burdge, G. C., & Lillycrop, K. A. (2010). Nutrition, epigenetics, and developmental plasticity: Implications for understanding human disease. Annual Review of Nutrition, 30, 315–339.

    Article  PubMed  CAS  Google Scholar 

  • Carmody, J. S., Wan, P., Accili, D., Zeltser, L. M., & Leibel, R. L. (2011). Respective contributions of maternal insulin resistance and diet to metabolic and hypothalamic phenotypes of progeny. Obesity (Silver Spring), 19, 492–499.

    Article  CAS  Google Scholar 

  • Chen, J. H., Martin-Gronert, M. S., Tarry-Adkins, J., & Ozanne, S. E. (2009). Maternal protein restriction affects postnatal growth and the expression of key proteins involved in lifespan regulation in mice. PLoS One, 4, e4950.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choi, S. W., & Friso, S. (2010). Epigenetics: A new bridge between nutrition and health. Advances in Nutrition, 1, 8–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davison, J. M., Mellott, T. J., Kovacheva, V. P., & Blusztajn, J. K. (2009). Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain. The Journal of Biological Chemistry, 284, 1982–1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • DeChiara, T. M., Efstratiadis, A., & Robertson, E. J. (1990). A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature, 345, 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Delage, B., & Dashwood, R. H. (2008). Dietary manipulation of histone structure and function. Annual Review of Nutrition, 28, 347–366.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drake, A. J., McPherson, R. C., Godfrey, K. M., Cooper, C., Lillycrop, K. A., Hanson, M. A., et al. (2012). An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clinical Endocrinology, 77, 808–815.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Twinn, D. S., & Ozanne, S. E. (2006). Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiology and Behavior, 88, 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, E. R., & Liu, D. (2010). Flavonoids influence epigenetic-modifying enzyme activity: Structure – function relationships and the therapeutic potential for cancer. Current Medicinal Chemistry, 17, 1756–1768.

    Article  PubMed  CAS  Google Scholar 

  • Gillman, M. W., Rifas-Shiman, S., Berkey, C. S., Field, A. E., & Colditz, G. A. (2003). Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics, 111, e221–e226.

    Article  PubMed  Google Scholar 

  • Gong, L., Pan, Y. X., & Chen, H. (2010). Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics, 5, 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Grygiel-Górniak, B. (2014). Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications—a review. Nutrition Journal, 13, 17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hales, C. N., & Barker, D. J. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35, 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., et al. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105, 17046–17049.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Herrick, K., Phillips, D. I., Haselden, S., Shiell, A. W., Campbell-Brown, M., & Godfrey, K. M. (2003). Maternal consumption of a high-meat, low-carbohydrate diet in late pregnancy: Relation to adult cortisol concentrations in the offspring. The Journal of Clinical Endocrinology and Metabolism, 88, 3554–3560.

    Article  PubMed  CAS  Google Scholar 

  • Hochberg, Z., Feil, R., Constancia, M., Fraga, M., Junien, C., Carel, J. C., et al. (2011). Child health, developmental plasticity, and epigenetic programming. Endocrine Reviews, 32, 159–224.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoyo, C., Murtha, A. P., Schildkraut, J. M., Jirtle, R. L., Demark-Wahnefried, W., Forman, M. R., et al. (2011). Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics, 6, 928–936.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang, R. C., Galati, J. C., Burrows, S., Beilin, L. J., Li, X., Pennell, C. E., et al. (2012). DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults. Clinical Epigenetics, 4, 21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hult, M., Tornhammar, P., Ueda, P., Chima, C., Bonamy, A. K., Ozumba, B., et al. (2010). Hypertension, diabetes and overweight: Looming legacies of the Biafran famine. PLoS One, 5, e13582.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Illingworth, R. S., & Bird, A. P. (2009). CpG islands—‘A rough guide’. FEBS Letters, 583, 1713–1720.

    Article  PubMed  CAS  Google Scholar 

  • Institute of Medicine. (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Washington, DC: National Academy Press.

    Google Scholar 

  • Jiang, X., Yan, J., West, A. A., Perry, C. A., Malysheva, O. V., Devapatla, S., et al. (2012). Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. The FASEB Journal, 26, 3563–3574.

    Article  PubMed  CAS  Google Scholar 

  • Jirtle, R. L., & Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews Genetics, 8, 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B. K., Levorse, J., & Tilghman, S. M. (2001). Deletion of a nuclease-sensitive region between the Igf2 and H19 genes leads to Igf2 misregulation and increased adiposity. Human Molecular Genetics, 10, 807–814.

    Article  PubMed  CAS  Google Scholar 

  • Jousse, C., Parry, L., Lambert-Langlais, S., Maurin, A. C., Averous, J., Bruhat, A., et al. (2011). Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. The FASEB Journal, 25, 3271–3278.

    Article  PubMed  CAS  Google Scholar 

  • Korosi, A., & Baram, T. Z. (2010). Plasticity of the stress response early in life: Mechanisms and significance. Developmental Psychobiology, 52, 661–670.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kovacheva, V. P., Davison, J. M., Mellott, T. J., Rogers, A. E., Yang, S., O’Brien, M. J., et al. (2009). Raising gestational choline intake alters gene expression in DMBA-evoked mammary tumors and prolongs survival. The FASEB Journal, 23, 1054–1063.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kovacheva, V. P., Mellott, T. J., Davison, J. M., Wagner, N., Lopez-Coviella, I., Schnitzler, A. C., et al. (2007). Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. The Journal of Biological Chemistry, 282, 31777–31788.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, N. S., Lindsay, R. S., Holmes, M. C., & Seckl, J. R. (1996). Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology, 64, 412–418.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Jaddoe, V. W., Qi, L., He, Y., Wang, D., Lai, J., et al. (2011a). Exposure to the Chinese famine in early life and the risk of metabolic syndrome in adulthood. Diabetes Care, 34, 1014–1018.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li, M., Sloboda, D. M., & Vickers, M. H. (2011b). Maternal obesity and developmental programming of metabolic disorders in offspring: Evidence from animal models. Experimental Diabetes Research, 2011, 592408.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li, Y., & Tollefsbol, T. O. (2010). Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Current Medicinal Chemistry, 17, 2141–2151.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liberato, S. C., Singh, G., & Mulholland, K. (2013). Effects of protein energy supplementation during pregnancy on fetal growth: A review of the literature focusing on contextual factors. Food and Nutrition Research 57. doi: 10.3402/fnr.v57i0.20499. eCollection 2013.

    Google Scholar 

  • Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A., & Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. Journal of Nutrition, 135, 1382–1386.

    PubMed  CAS  Google Scholar 

  • Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662.

    Article  PubMed  CAS  Google Scholar 

  • Lucassen, P. J., Naninck, E. F., van Goudoever, J. B., Fitzsimons, C., Joels, M., & Korosi, A. (2013). Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends in Neurosciences, 36, 621–631.

    Article  PubMed  CAS  Google Scholar 

  • Lui, J. C., Finkielstain, G. P., Barnes, K. M., & Baron, J. (2008). An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R189–R196.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Magliano, D. C., Bargut, T. C., de Carvalho, S. N., Aguila, M. B., Mandarim-de-Lacerda, C. A., & Souza-Mello, V. (2013). Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice. PLoS One, 8, e64258.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maloney, C. A., Hay, S. M., Young, L. E., Sinclair, K. D., & Rees, W. D. (2011). A methyl-deficient diet fed to rat dams during the peri-conception period programs glucose homeostasis in adult male but not female offspring. The Journal of Nutrition, 141, 95–100.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mao, J., Zhang, X., Sieli, P. T., Falduto, M. T., Torres, K. E., & Rosenfeld, C. S. (2010). Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proceedings of the National Academy of Sciences of the United States of America, 107, 5557–5562.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marco, A., Kisliouk, T., Weller, A., & Meiri, N. (2013). High fat diet induces hypermethylation of the hypothalamic Pomc promoter and obesity in post-weaning rats. Psychoneuroendocrinology, 38, 2844–2853.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, W., Niveleau, A., Walter, J., Fundele, R., & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature, 403, 501–502.

    Article  PubMed  CAS  Google Scholar 

  • McCann, J. C., Hudes, M., & Ames, B. N. (2006). An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neuroscience and Biobehavioral Reviews, 30, 696–712.

    Article  PubMed  CAS  Google Scholar 

  • McCurdy, C. E., Bishop, J. M., Williams, S. M., Grayson, B. E., Smith, M. S., Friedman, J. E., et al. (2009). Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. The Journal of Clinical Investigation, 119, 323–335.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meaney, M. J., & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7, 103–123.

    PubMed Central  PubMed  Google Scholar 

  • Mehedint, M. G., Craciunescu, C. N., & Zeisel, S. H. (2010a). Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 107, 12834–12839.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mehedint, M. G., Niculescu, M. D., Craciunescu, C. N., & Zeisel, S. H. (2010b). Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. The FASEB Journal, 24, 184–195.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mills, J. L., Fan, R., Brody, L. C., Liu, A., Ueland, P. M., Wang, Y., et al. (2014). Maternal choline concentrations during pregnancy and choline-related genetic variants as risk factors for neural tube defects. American Journal of Clinical Nutrition, 100, 1069–1074.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miñana-Solis, M. D. C., & Escobar, C. (2008). Post-weaning protein malnutrition in the rat produces short and long term metabolic impairment, in contrast to earlier and later periods. International Journal of Biological Sciences, 4, 422–432.

    Article  Google Scholar 

  • Morison, I. M., Paton, C. J., & Cleverley, S. D. (2001). The imprinted gene and parent-of-origin effect database. Nucleic Acids Research, 29, 275–276.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morris, M. J., & Chen, H. (2009). Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. International Journal of Obesity, 33, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Mortensen, O. H., Olsen, H. L., Frandsen, L., Nielsen, P. E., Nielsen, F. C., Grunnet, N., et al. (2010). Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring’s liver and skeletal muscle; protective effect of taurine. Pediatric Research, 67, 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Naess, O., Stoltenberg, C., Hoff, D. A., Nystad, W., Magnus, P., Tverdal, A., et al. (2013). Cardiovascular mortality in relation to birth weight of children and grandchildren in 500,000 Norwegian families. European Heart Journal, 34, 3427–3436.

    Article  PubMed  Google Scholar 

  • O’Donnell, K., O'Connor, T. G., & Glover, V. (2009). Prenatal stress and neurodevelopment of the child: Focus on the HPA axis and role of the placenta. Developmental Neuroscience, 31, 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, T., Shibato, J., Rakwal, R., Saito, T., Tamura, G., Kuwagata, M., et al. (2014). Seeking genes responsible for developmental origins of health and disease from the fetal mouse liver following maternal food restriction. Congenital Anomalies (Kyoto), 54, 195–219.

    CAS  Google Scholar 

  • Ong, K. K., Ahmed, M. L., Emmett, P. M., Preece, M. A., & Dunger, D. B. (2000). Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. BMJ, 320, 967–971.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ooi, S. K., O’Donnell, A. H., & Bestor, T. H. (2009). Mammalian cytosine methylation at a glance. Journal of Cell Science, 122, 2787–2791.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 448, 714–717.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Palou, M., Priego, T., Sánchez, J., Palou, A., & Picó, C. (2013). Metabolic programming of sirtuin 1 (SIRT1) expression by moderate energy restriction during gestation in rats may be related to obesity susceptibility in later life. The British Journal of Nutrition, 109, 757–764.

    Article  PubMed  CAS  Google Scholar 

  • Patel, M. S., & Srinivasan, M. (2011). Metabolic programming in the immediate postnatal life. Annals of Nutrition and Metabolism, 58(Suppl 2), 18–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Perkins, E., Murphy, S. K., Murtha, A. P., Schildkraut, J., Jirtle, R. L., Demark-Wahnefried, W., et al. (2012). Insulin-like growth factor 2/H19 methylation at birth and risk of overweight and obesity in children. The Journal of Pediatrics, 161, 31–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rich-Edwards, J. W., Stampfer, M. J., Manson, J. E., Rosner, B., Hankinson, S. E., Colditz, G. A., et al. (1997). Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ, 315, 396–400.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roseboom, T., de Rooij, S., & Painter, R. (2006). The Dutch famine and its long-term consequences for adult health. Early Human Development, 82, 485–491.

    Article  PubMed  Google Scholar 

  • Roseboom, T. J., Painter, R. C., van Abeelen, A. F., Veenendaal, M. V., & de Rooij, S. R. (2011). Hungry in the womb: What are the consequences? Lessons from the Dutch famine. Maturitas, 70, 141–145.

    Article  PubMed  Google Scholar 

  • Ross, R. G., Hunter, S. K., McCarthy, L., Beuler, J., Hutchison, A. K., Wagner, B. D., et al. (2013). Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk. The American Journal of Psychiatry, 170, 290–298.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sampey, B. P., Vanhoose, A. M., Winfield, H. M., Freemerman, A. J., Muehlbauer, M. J., Fueger, P. T., et al. (2011). Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: Comparison to high-fat diet. Obesity (Silver Spring), 19, 1109–1117.

    Article  CAS  Google Scholar 

  • Sarr, O., Yang, K., & Regnault, T. R. (2012). In utero programming of later adiposity: The role of fetal growth restriction. Journal of Pregnancy, 2012, 134758.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schemies, J., Uciechowska, U., Sippl, W., & Jung, M. (2010). NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets. Medicinal Research Reviews, 30, 861–889.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, G. M., Finnell, R. H., Blom, H. J., Carmichael, S. L., Vollset, S. E., Yang, W., et al. (2009). Choline and risk of neural tube defects in a folate-fortified population. Epidemiology, 20, 714–719.

    Article  PubMed  Google Scholar 

  • Shiell, A. W., Campbell-Brown, M., Haselden, S., Robinson, S., Godfrey, K. M., & Barker, D. J. (2001). High-meat, low-carbohydrate diet in pregnancy: Relation to adult blood pressure in the offspring. Hypertension, 38, 1282–1288.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., et al. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences of the United States of America, 104, 19351–19356.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8, 383–395.

    PubMed Central  PubMed  Google Scholar 

  • Steegers-Theunissen, R. P., Obermann-Borst, S. A., Kremer, D., Lindemans, J., Siebel, C., Steegers, E. A., et al. (2009). Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One, 4, e7845.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steiger, H., Labonté, B., Groleau, P., Turecki, G., & Israel, M. (2013). Methylation of the glucocorticoid receptor gene promoter in bulimic women: Associations with borderline personality disorder, suicidality, and exposure to childhood abuse. International Journal of Eating Disorders, 46, 246–255.

    Article  PubMed  Google Scholar 

  • Stein, A. D., Barnhart, H. X., Hickey, M., Ramakrishnan, U., Schroeder, D. G., & Martorell, R. (2003). Prospective study of protein-energy supplementation early in life and of growth in the subsequent generation in Guatemala. The American Journal of Clinical Nutrition, 78, 162–167.

    PubMed  CAS  Google Scholar 

  • Stuart, A., Amer-Wåhlin, I., Persson, J., & Källen, K. (2013). Long-term cardiovascular risk in relation to birth weight and exposure to maternal diabetes mellitus. International Journal of Cardiology, 168, 2653–2657.

    Article  PubMed  Google Scholar 

  • Susser, E., Kirkbride, J. B., Heijmans, B. T., Kresovich, J. K., Lumey, L. H., & Stein, A. D. (2012). Maternal prenatal nutrition and health in grandchildren and subsequent generations. Annual Review of Anthropology, 41, 577–610.

    Article  Google Scholar 

  • Talens, R. P., Boomsma, D. I., Tobi, E. W., Kremer, D., Jukema, J. W., Willemsen, G., et al. (2010). Variation, patterns, and temporal stability of DNA methylation: Considerations for epigenetic epidemiology. The FASEB Journal, 24, 3135–3144.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, M. D., Cole, D. E., & Ray, J. G. (2009). Vitamin B-12 and neural tube defects: The Canadian experience. The American Journal of Clinical Nutrition, 89, 697S–701S.

    Article  PubMed  CAS  Google Scholar 

  • Tobi, E. W., Goeman, J. J., Monajemi, R., Gu, H., Putter, H., Zhang, Y., et al. (2014). DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nature Communications, 5, 5592.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tobi, E. W., Lumey, L. H., Talens, R. P., Kremer, D., Putter, H., Stein, A. D., et al. (2009). DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Human Molecular Genetics, 18, 4046–4053.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tobi, E. W., Slagboom, P. E., van Dongen, J., Kremer, D., Stein, A. D., Putter, H., et al. (2012). Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLoS One, 7, e37933.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tsai, H. W., Grant, P. A., & Rissman, E. F. (2009). Sex differences in histone modifications in the neonatal mouse brain. Epigenetics, 4, 47–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vogt, M. C., Paeger, L., Hess, S., Steculorum, S. M., Awazawa, M., Hampel, B., et al. (2014). Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell, 156, 495–509.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vohr, B. R., McGarvey, S. T., & Tucker, R. (1999). Effects of maternal gestational diabetes on offspring adiposity at 4–7 years of age. Diabetes Care, 22, 1284–1291.

    Article  PubMed  CAS  Google Scholar 

  • Voigt, P., Tee, W. W., & Reinberg, D. (2013). A double take on bivalent promoters. Genes and Development, 27, 1318–1338.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vucetic, Z., Kimmel, J., Totoki, K., Hollenbeck, E., & Reyes, T. M. (2010). Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology, 151, 4756–4764.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Waterland, R. A., Dolinoy, D. C., Lin, J. R., Smith, C. A., Shi, X., & Tahiliani, K. G. (2006). Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis, 44, 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23, 5293–5300.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Waterland, R. A., Travisano, M., Tahiliani, K. G., Rached, M. T., & Mirza, S. (2008). Methyl donor supplementation prevents transgenerational amplification of obesity. International Journal of Obesity, 32, 1373–1379.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Williams-Wyss, O., Zhang, S., MacLaughlin, S. M., Kleemann, D., Walker, S. K., Suter, C. M., et al. (2014). Embryo number and periconceptional undernutrition in the sheep have differential effects on adrenal epigenotype, growth, and development. The American Journal of Physiology: Endocrinology and Metabolism, 307, E141–E150.

    CAS  Google Scholar 

  • Winick, M., & Noble, A. (1966). Cellular response in rats during malnutrition at various ages. Journal of Nutrition, 89, 300–306.

    PubMed  CAS  Google Scholar 

  • Woodall, S. M., Johnston, B. M., Breier, B. H., & Gluckman, P. D. (1996). Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatric Research, 40, 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T., Fu, M., Pestell, R., & Sauve, A. A. (2006). SIRT1 and endocrine signaling. Trends in Endocrinology and Metabolism, 17, 186–191.

    Article  PubMed  CAS  Google Scholar 

  • Yokomizo, H., Inoguchi, T., Sonoda, N., Sakaki, Y., Maeda, Y., Inoue, T., et al. (2014). Maternal high-fat diet induces insulin resistance and deterioration of pancreatic β-cell function in adult offspring with sex differences in mice. The American Journal of Physiology: Endocrinology and Metabolism, 306, E1163–E1175.

    CAS  Google Scholar 

  • Zhang, S., Rattanatray, L., MacLaughlin, S. M., Cropley, J. E., Suter, C. M., Molloy, L., et al. (2010). Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. The FASEB Journal, 24, 2772–2782.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X., Wang, Y., Ren, W., Luo, R., Zhang, S., Zhang, J. H., et al. (2012). Risk of metabolic syndrome in adults exposed to the great Chinese famine during the fetal life and early childhood. European Journal of Clinical Nutrition, 66, 231–236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyin Jiang Ph.D., R.D. .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

ACTH:

Adrenocorticotropic hormone

AgRP:

Agouti-related peptide

BHMT:

Betaine homocysteine methyltransferase

CpG:

Cytosine-guanine dinucleotide

CPT1A:

Carnitine palmitoyltransferase-1A

CRH:

Corticotropin-releasing hormone

CTCF:

CCCTC-binding factor

DNMT:

DNA methyltransferase

GR:

Glucocorticoid receptor

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HMT:

Histone methyltransferase

HPA axis:

The hypothalamic-pituitary-adrenal axis

IGF2:

Insulin growth-like factor 2

INSR:

Insulin receptor

LDL:

Low-density lipoprotein

5-CH3-THF:

Methyltetrahydrofolate

NTD:

Neural tube defect

PCK1:

Phosphoenolpyruvate carboxykinase

POMC:

Pro-opiomelanocortin

PPAR:

Peroxisome proliferator-activated receptors

SAM:

S-adenosylmethionine

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiang, X. (2016). Nutrition in Early Life, Epigenetics, and Health. In: Hollar, D. (eds) Epigenetics, the Environment, and Children’s Health Across Lifespans. Springer, Cham. https://doi.org/10.1007/978-3-319-25325-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25325-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25323-7

  • Online ISBN: 978-3-319-25325-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics