Skip to main content

Advertisement

Log in

N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Many tropical areas lack soil nitrogen (N), an essential nutrient for plant growth and the production of food. Commercial N fertilisers are expensive, with only a fraction of this nutrient reaching the plant, which limits efficiency and potentially increases water contamination. Dinitrogen (N2)-fixing trees are a promising alternative to sustainably fertilise crops. The use of N2-fixing trees in tropical agriculture has garnered attention from researchers, development organisations, governments, and farmers in recent years as a revival of pro-environmental practices. Dinitrogen (N2)-fixing trees can establish in N-deficient soils, replace N lost in harvest and provide an as-of-yet not fully realised benefit to ecosystem services. High N2-fixation rates, upwards of 92 %, have been measured in some N2-fixing trees, using the 15N natural abundance method. The recovery of this fixed-N by associated perennial crops is of particular interest in tropical agroforestry systems. Here, we review N transfer pathways from trees to perennial crops in agroforestry. We focus on Theobroma cacao and Coffea arabica. We also draw on agroforestry systems with herbaceous alleys. We identify three pathways of N transfer from N2-fixers to non-N2-fixing crops: (1) decomposition and mineralisation of organic compounds, e.g., litter, prunings, roots, and nodules, (2) root-to-root direct transfer via exudation, and (3) common mycorrhizal networks. Both 15N natural abundance and 15N enrichment techniques have been used to study N transfer. However, various factors limit the accuracy of estimates within agroforestry systems. Under field conditions, the major limits are (1) improper reference selection and (2) unrepresentative sampling of the receiver plant and/or donor N source. We highlight key findings and provide recommendations to tackle these obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araujo ASF, Leite LFC, Iwata BF, Lira MA, Xavier GR, Figueiredo MVB (2012) Microbiological process in agroforestry systems. A review. Agron Sustain Dev 32:215–226. doi:10.1007/s13593-011-0026-0

    Article  CAS  Google Scholar 

  • Bainard LD, Klironomos JN, Gordon AM (2011) Arbuscular mycorrhizal fungi in tree-based intercropping systems: A review of their abundance and diversity. Pedobiol Int J Soil Biol 54:57–61. doi:10.1016/j.pedobi.2010.11.001

    Google Scholar 

  • Bala A, Murphy PJ, Osunde AO, Giller KE (2003) Nodulation of tree legumes and ecology of their native rhizobial populations in tropical soils. Appl Soil Ecol 22:211–223. doi:10.1016/S0929-1393(02)00157-9

    Article  Google Scholar 

  • Barea JM, Azcon-Aguilar C, Azcon R (1987) Vesicular-arbuscular mycorrhiza improve both symbiotic N2 fixation and N uptake from soil as assessed with a 15N technique under field conditions. New Phytol 106:717–725. doi:10.1111/j.1469-8137.1987.tb00172.x

    Article  CAS  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 7:103–114. doi:10.1007/978-94-015-9008-2_6

    Article  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270. doi:10.1023/A:1009890514844

    Article  Google Scholar 

  • Bouillet JP, Laclau JP, Gonçalves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 2: Nitrogen accumulation in the stands and biological N2 fixation. For Eco Manage 255:3918–3930. doi:10.1016/j.foreco.2007.10.050

    Google Scholar 

  • Carlsson G, Huss-Danell K (2013) Does nitrogen transfer between plants confound 15N-based quantifications of N2 fixation? Plant Soil. doi:10.1007/s11104-013-1802-1

    Google Scholar 

  • Danso SKA, Bowen GD, Sanginga N (1992) Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 141:177–196. doi:10.1007/978-94-017-0910-1_10

    Article  CAS  Google Scholar 

  • Daudin D, Sierra J (2008) Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system. Agric Ecosyst Environ 126:275–280. doi:10.1016/j.agee.2008.02.009

    Article  CAS  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  • Dommergues YR (1995) Nitrogen fixation by trees in relation to soil nitrogen economy. Fertil Res 42:215–230. doi:10.1007/BF00750516

    Article  CAS  Google Scholar 

  • Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59:121–129. doi:10.1023/A:1026387711571

    Article  Google Scholar 

  • Elgersma A, Schlepers H, Nassiri M (2000) Interactions between perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) under contrasting nitrogen availability: productivity, seasonal patterns of species composition, N2 fixation, N transfer and N recovery. Plant Soil 21:281–299. doi:10.1023/A:1004797106981

    Article  Google Scholar 

  • FAOStat (2011) http://www.fao.org/corp/statistics/en/. Accessed on 15 March 2013

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Gylfadóttir T, Helgadóttir A, Høgh-Jensen H (2007) Consequences of including adapted white clover in northern European grassland: transfer and deposition of nitrogen. Plant Soil 297:93–104. doi:10.1007/s11104-007-9323-4

    Article  Google Scholar 

  • Haggar JP, Tanner EVJ, Beer JW, Kass DCL (1993) Nitrogen dynamics of tropical agroforestry and annual cropping systems. Soil Biol Biochem 25:1363–1378. doi:10.1016/0038-0717(93)90051-C

    Article  CAS  Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 108:417–423. doi:10.1111/j.1469-8137.1988.tb04182.x

    Article  Google Scholar 

  • He X, Xu M, Qiu GY, Zhou J (2009) Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118. doi:10.1093/jpe/rtp015

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330. doi:10.1038/nature07028

    Article  CAS  PubMed  Google Scholar 

  • Ingleby K, Wilson J, Munro RC, Cavers S (2007) Mycorrhizas in agroforestry: spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. Plant Soil 294:125–136. doi:10.1007/s11104-007-9239-z

    Article  CAS  Google Scholar 

  • Isaac ME, Kimaro AA (2011) Diagnosis of nutrient imbalances with vector analysis in agroforestry systems. J Environ Qual 40:860–866. doi:10.2134/jeq2010.0144

    Article  CAS  PubMed  Google Scholar 

  • Isaac ME, Timmer VR, Quashie-Sam SJ (2007) Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutr Cycl Agroecosyst 78:155–165. doi:10.1007/s10705-006-9081-3

    Article  Google Scholar 

  • Isaac ME, Harmand JM, Lesueur D, Lelon J (2011) Tree age and soil phosphorus conditions influence N2-fixation rates and soil N dynamics in natural populations of Acacia senegal. For Ecol Manag 261:582–588

    Article  Google Scholar 

  • Isaac ME, Hinsinger P, Harmand JM (2012) Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions. Sci Total Environ. doi:10.1016/j.scitotenv.2011.12.071

    PubMed  Google Scholar 

  • Jalonen R, Sierra J (2012) Temporal variation of N isotopic composition of decomposing legume roots and its implications to N cycling estimates in 15N tracer studies in agroforestry systems. Appl Environ Soil Sci Artic. doi:10.1155/2012/506302, ID 506302

    Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009a) Root exudates of a legume tree as a nitrogen source for a tropical fodder grass. Nutr Cycl Agroecosyst 85:203–213. doi:10.1007/s10705-009-9259-6

    Article  Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009b) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32:1366–1376. doi:10.1111/j.1365-3040.2009.02004.x

    Article  CAS  PubMed  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries—a review. Agron Sustain Dev 32:329–364. doi:10.1007/s13593-011-0056-7

    Article  CAS  Google Scholar 

  • Kähkölä A-K, Nygren P, Leblanc HA, Pennanen T, Pietikäinen J (2012) Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae. Nutr Cycl Agroecosyst 92:51–65. doi:10.1007/s10705-011-9471-z

    Article  Google Scholar 

  • Kurppa M, Leblanc HA, Nygren P (2010) Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15N labelled soil: ecological and experimental considerations. Agrofor Syst 80:223–239. doi:10.1007/s10457-010-9327-6

    Article  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207. doi:10.1111/j.1469-8137.2008.02630.x

    Article  CAS  PubMed  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochem 46:45–65. doi:10.1007/BF01007573

    CAS  Google Scholar 

  • Moyer-Henry KA, Burton JW, Israel DW, Rufty TW (2006) Nitrogen transfer between plants: a 15N natural abundance study with crop and weed species. Plant Soil 282:7–20. doi:10.1007/s11104-005-3081-y

    Article  CAS  Google Scholar 

  • Nair PKR, Buresh RJ, Mugendi DN, Latt CR (1998) Nutrient cycling in tropical agroforestry systems: myths and science. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agriculture. CRC Press, Boca Raton, pp 1–32

    Google Scholar 

  • Nygren P, Leblanc HA (2009) Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees. Agrofor Syst 76:303–315. doi:10.1007/s10457-008-9160-3

    Article  Google Scholar 

  • Nygren P, Cruz P, Domenach AM, Vaillant V, Sierra J (2000) Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume. Tree Physiol 20:41–48

    Article  PubMed  Google Scholar 

  • Nygren P, Fernández MP, Harmand J-M, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst. doi:10.1007/s10705-012-9542-9

    Google Scholar 

  • Paynel F, Murray PJ, Cliquet JB (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229:235–243. doi:10.1023/A:1004877214831

    Article  CAS  Google Scholar 

  • Pirhofer-Walzl K, Rasmussen J, Høgh-Jensen H, Eriksen J, Søegaard K, Rasmussen J (2011) Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil. doi:10.1007/s11104-011-0882-z

    Google Scholar 

  • Rao AV, Giller KE (1993) Nitrogen fixation and its transfer from Leucaena to grass using 15N. N For Ecol Manag 61:221–227

    Article  Google Scholar 

  • Rowe EC, Hairiah K, Giller KE, van Noordwijk M, Cadisch G (1999) Testing the safety-net role of hedgerow trees by 15N placement at different soil depths. Agrofor Syst 43:81–93

    Article  Google Scholar 

  • Schroth G, Lehmann J, Rodrigues MRL, Barros E, Macêdo JLV (2001) Plant-soil interactions in multistrata agroforestry in the humid tropics. Agrofor Syst 53:85–102

    Article  Google Scholar 

  • Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington

    Google Scholar 

  • Sierra J, Daudin D (2010) Limited 15N transfer from stem-labeled leguminous trees to associated grass in an agroforestry system. Eur J Agron 32:240–242. doi:10.1016/j.eja.2009.11.003

    Article  CAS  Google Scholar 

  • Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903. doi:10.1016/j.soilbio.2005.12.012

    Article  CAS  Google Scholar 

  • Sierra J, Dulormne M, Desfontaines L (2002) Soil nitrogen as affected by Gliricidia sepium in a silvopastoral system in Guadeloupe, French Antilles. Agrofor Syst 54:87–97. doi:10.1023/A:1015025401946

    Article  Google Scholar 

  • Sierra J, Daudin D, Domenach A, Nygren P, Desfontaines L (2007) Nitrogen transfer from a legume tree to the associated grass estimated by the isotopic signature of tree root exudates: a comparison of the 15N leaf feeding and natural 15N abundance methods. Eur J Agron 27:178–186. doi:10.1016/j.eja.2007.03.003

    Article  CAS  Google Scholar 

  • Simard SW, Durali D, Jones M (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. Ecol Stud 157:33–74. doi:10.1007/978-3-540-38364-2_2

    Article  Google Scholar 

  • Snoeck D, Zapata F, Domenach A-M (2000) Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environ 4:95–100

    CAS  Google Scholar 

  • Ståhl L, Nyberg G, Högberg P, Buresh RJ (2002) Effects of planted tree fallows on soil nitrogen dynamics aboveground and root biomass, N2-fixation and subsequent maize crop productivity in Kenya. Plant Soil 243:103–117

    Article  Google Scholar 

  • Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey R, Giller KE, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Canberra, Australia, 258 p. http://aciar.gov.au/publication/MN136

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. The authors thank anonymous reviewers for insightful and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marney E. Isaac.

About this article

Cite this article

Munroe, J.W., Isaac, M.E. N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agron. Sustain. Dev. 34, 417–427 (2014). https://doi.org/10.1007/s13593-013-0190-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0190-5

Keywords

Navigation