Skip to main content
Log in

Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The relative importance of N fixation, organic material inputs and nutrient inputs in litterfall, as justifications for including shade trees in plantations of coffee or cacao, is discussed. According to existing data, N fixation by leguminous shade trees does not exceed 60 kg.N/ha/a. However, these trees contribute 5,000–10,000 kg. organic material/ha/a.

Comparisons are made between the leguminous shade tree Erythrina poeppigiana and the non-leguminous timber tree Cordia alliodora. The former, when pruned 2 or 3 times/a., can return to the litter layer the same amount of nutrients that are applied to coffee plantations via inorganic fertilizers, even at the highest recommended rates for Costa Rica of 270 kg.N, 60 kg.P, 150 kg.K/ha/a. The annual nutrient return in this litterfall represents 90–100 percent of the nutrient store in above-ground biomass of E. poeppigiana, and hence the consequences of competition with the crop should not be a serious limitation. In the case of C. alliodora, which is not pruned, nutrient storage in the tree stems, especially of K, is a potential limiting factor to both crop and tree productivity.

It is concluded that, in fertilized plantations of cacao and coffee, litter productivity is a more important shade tree characteristic than N fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achutha Rao YR (1960) Shade trees for coffee: Erythrina lithosperma. Indian Coffee 24: 500–505

    Google Scholar 

  2. Adams SN and McKelvie AD (1955) Environmental requirements of cocoa in the Gold Coast. In: Rep Cocoa Conf, p 25. London/England. The Cocoa, Chocolate and Confectionary Alliance

    Google Scholar 

  3. Alpizar L, Fassbender HW and Heuveldop J (1983) Estudio de sistemas agroforestales en el experimento central de CATIE, Turrialba. III Producción de residuos vegetales. Turrialba/Costa Rica. Centro Agronomico Tropical de Investigación y Enseñanza. 14 p

    Google Scholar 

  4. Aranguren J, Escalante G and Herrera R (1982a) Nitrogen cycle of tropical perennial crops under shade trees: I Coffee. Plant Soil 67: 247–258

    CAS  Google Scholar 

  5. Aranguren J, Escalante G and Herrera R (1982b) Nitrogen cycle of tropical perennial crops under shade trees: II Cacao. Plant Soil 67: 259–269

    CAS  Google Scholar 

  6. Babbar L (1983) Descomposición del follaje en ecosistemas sucesionales en Turrialba, Costa Rica. M. Sc. Thesis. Turrialba/Costa Rica. Centro Agronómico Tropical de Investigación y Enseñanza-Universidad de Costa Rica. 79 p

    Google Scholar 

  7. Beer JW (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agroforestry Systems 5: 3–13

    Article  Google Scholar 

  8. Boyer J (1973) Cycles de la matiere organique et des elements mineraux dans une cacayere Cameraunaise. Cafe Cacao The 17 (1): 3–24

    CAS  Google Scholar 

  9. Budowski G (1981) Applicability of agro-forestry systems. In: MacDonald LH, ed, Agroforestry in the african humid tropics, pp 13–16. Tokyo/Japan. United Nations University

    Google Scholar 

  10. Budowski G, Kass D and Russo R (1984) Leguminous trees for shade. Pesq Agropec Bras 19 (Special volume): 205–222

    Google Scholar 

  11. Costa Rica Ministerio de Agricultura Y Ganaderia (1978) Manual de recomendaciones para cultivar café, 3 ed, p 27. San José/Costa Rica. Oficina de Café

    Google Scholar 

  12. Cuenca G, Aranguren J and Herrera R (1983) Root growth and litter decomposition in a coffee plantation under shade trees. Plant Soil 71: 477–486

    Article  CAS  Google Scholar 

  13. Escalante G, Herrera R and Aranguren J (1984) Fijación de nitrógeno en árboles de sombra (Erythrina poeppigiana) en cacaotales del Norte de Venezuela. Pesqui Agropecu Bras 19 (Special volume): 223–230

    Google Scholar 

  14. Ewel JJ (1976) Litter fall and leaf decomposition in a tropical forest succession in Eastern Guatemala. Ecol 64: 293–308

    CAS  Google Scholar 

  15. Fassbender HW, Alpizar L, Heuveldop J, Enriquez G and Folster H (1985) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. III Modelos de la materia orgánica y los elementos nutritivos. Turrialba 35: 403–413

    Google Scholar 

  16. Fassbender HW (1985) Nutrient cycling in agroforestry systems of coffee (Coffea arabica) with shade trees in the Central Experiment of CATIE. Proc Seminar ‘Advances in Agroforestry Research’, Sept 1–10 1985, Turrialba/Costa Rica. Centro Agronómico Tropical de Investigación y Enseñanza. (In press)

  17. Glover N and Beer JW (1984) Spatial and temporal fluctuations of litterfall in the agroforestry associations Coffea arabica var. Caturra — Erythrina poeppigiana and C. arabica var. Caturra — E. poeppigianaCordia alliodora. Turrialba/Costa Rica. Centro Agronómico Tropical de Investigaciíon y Enseñanza. 49 p

    Google Scholar 

  18. Glover N and Beer JW (1986) Nutrient cycling in two traditional Central American agroforestry systems. Agroforestry Systems 4: 77–87

    Article  Google Scholar 

  19. Granados N (1972) Mineralización del azufre en suelos bajo cacao. M. Sc. Thesis. Turrialba/Costa Rica. Instituto Interamericano de Cooperación para la Agricultura. 56 p

    Google Scholar 

  20. Haliday J (1981) Agotechnologies based on symbiotic systems that fix nitrogen. In: Background papers for innovative biological technologies for lesser developed countries, pp 243–273. Washington/USA. U.S. Government Printing Office

    Google Scholar 

  21. Hardy F (1959) La relación carbono-nitrógeno en los suelos de cacao. Turrialba 9: 4–11.

    CAS  Google Scholar 

  22. Heuveldop J, Alpizar L, Fassbender HW, Enriquez G and Folster H (1985) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. II Producción agricola, maderable y de residuos vegetales. Turrialba 35: 347–355

    Google Scholar 

  23. Jenny H (1941) Factors of soil formation. New York: McGraw 281 p

    Google Scholar 

  24. Jimenez AE and Martinez P (1979a) Estudios ecológicos de agro-ecosistema cafetalero: I. Estructura de los cafetales de una finca cafetalera en Coatepec Ver. México. Biótica 4(1): 1–12

    Google Scholar 

  25. Jimenez AE and Martinez P (1979b) Estudios ecológicos del agro-ecosistema cafetalero: II Producción de materia orgánica en diferentes tipos de estructura. Biótica 4 (3): 109–126

    Google Scholar 

  26. Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. New York: Willey pp 28–32

    Google Scholar 

  27. McCaffrey D (1972) Volume tables for laurel, Cordia alliodora in Northern Costa Rica. Turrialba 22(4): 449–453

    Google Scholar 

  28. Nair PKR (1979) Intensive multiple cropping with coconuts in India. Berlin: Paul Parey pp 69–82

    Google Scholar 

  29. Nye PH and Greeland PJ (1960) The soil under shifting cultivation. Farnham Royal/England. Commonw Agric Bur Tech Commun No. 51. 156 p

  30. Quinlan M (1984) Mulches from two tropical tree species: Erythrina poeppigiana (Walpapers) O.F. Cook and Gmelina arborea Rox, as nitrogen sources in the production of maize (Zea mays L.). M. Sc. Thesis. Turrialba/Costa Rica. Centro Agronómico Tropical de Investigación y Enseñanza-Universidad de Costa Rica 74 p

    Google Scholar 

  31. Roskoski J (1981) Nodulation and N2 fixation by Inga jinicuil, a woody legume in coffee plantations: I. Measurements of nodule biomass and field C2H2 reduction rates. Plant Soil 59: 201–206

    Article  CAS  Google Scholar 

  32. Roskoski JP and Van Kessel C (1985) Annual, seasonal and diel variation in nitrogen fixing activity by Inqa jinicuil, a tropical legume tree. Oikos 44: 306–312

    Google Scholar 

  33. Russo R and Budowski G (1986) Effect of pollarding frequency on biomass of Erythrina poeppigiana as a coffee shade tree. Agroforestry Systems 4: 145–162

    Article  Google Scholar 

  34. Santana MB and Cabala P (1982) Dynamics of nitrogen in a shaded cacao plantation. Plant Soil 67: 271–281

    Article  CAS  Google Scholar 

  35. Santana MB and Cabala P (1985) Reciclagem de nutrientes em uma plantacao de cacau sombreada com Eritrina In: Proc IX Int Cocoa Res Conf, Togo 1984, pp. 205–210 Lagos/Nigeria. Cocoa Producers Alliance

    Google Scholar 

  36. Somarriba E and Beer JW (1987) Dimensions, volumes and growth of Cordia alliodora in agroforestry systems. For Ecol Manag 18: 113–126

    Google Scholar 

  37. Suarez de F and Rodriguez A (1955) Equilibrio de materia orgánica en plantaciones de café. Chinchina/Columbia. Federación Nacional de Cafetaleros Bol Téc 2 (15): 5–28

    Google Scholar 

  38. Suarez de Castro F, Montenegro L, Aviles PC, Moreno MM and Bolamos M (1961) Efecto del sombrio en los primeros años de vida de un cafetal. Santa Tecla/El Salvador. Inst Salvadoreño Invest Café. 36 p

    Google Scholar 

  39. Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65(1): 285–298

    CAS  Google Scholar 

  40. Willey RW (1975) The use of shade in coffee, cacao and tea. Hortic Abstr 45(12): 791–798

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, J. Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agroforest Syst 7, 103–114 (1988). https://doi.org/10.1007/BF00046846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046846

Key words

Navigation