Skip to main content
Log in

NaCl treatment improves reactive oxygen metabolism and antioxidant capacity in broccoli sprouts

  • Research Report
  • Others
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

We investigated membrane lipid peroxidation, reactive oxygen species (ROS) metabolism, antioxidant component content, and antioxidant enzyme activity to understand how NaCl regulates the growth of broccoli sprouts. NaCl treatment significantly increased ROS and malondialdehyde content, and electrolyte permeability in broccoli sprouts. Ascorbic acid and anthocyanin content also increased, simultaneously and significantly. During germination, treatments with 40 mM and 80 mM NaCl significantly promoted broccoli sprouts growth, likely because of ability to enhance antioxidant activity, thus alleviating the effect of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Brehe JE, Burch HB (1976). Enzymatic assay for glutathione. Anal Biochem 74:189–197

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Manganaris GA, Fotopoulos V (2014). Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. J Exp Bot 107:46–54

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Dominguez-Perles R, Martinez-Ballesta MC, Riquelme F, Carvajal M, Garcia-Viguera C, Moreno DA (2011). Novel varieties of broccoli for optimal bioactive components under saline stress. J Sci Food Agric 91:1638–1647

    Article  CAS  PubMed  Google Scholar 

  • Du G, Li M, Ma F, Liang D (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem 113:557–562

    Article  CAS  Google Scholar 

  • Eva B, M Lourdes GM, M Luisa EG, Fernando M, Heredia FJ, Meléndez-Martínez AJ (2011). Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J Agric Food Chem 59:11676–11682

    Article  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997). Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Fuleki T, Francis F (1968). Quantitative Methods for Anthocyanins. J Food Sci 33:266–274

    Article  CAS  Google Scholar 

  • Grintzalis K, Zisimopoulos D, Grune T, Weber D, Georgiou CD (2013). Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides. Free Radic Biol Med 59:27–35

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Guo Q, Zhang L, Chen Z, Han Y, Gu Z (2012). Physiological and biochemical metabolism of germinating broccoli seeds and sprouts. J Agric Food Chem 60:209–213

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Yang R, Wang Z, Guo Q, Gu Z (2014). Effect of NaCl stress on health-promoting compounds and antioxidant activity in the sprouts of three broccoli cultivars. Int J Food Sci Nutr 65:476–481

    Article  CAS  PubMed  Google Scholar 

  • Guo R-f, Yuan G-f, Wang Q-m (2013). Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J Zhejiang Univ Sci B 14:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Long X, Wang L, Kang J, Zhang Z, Zed R, Liu Z (2012). Growth, photosynthesis and H+-ATPase activity in two Jerusalem artichoke varieties under NaCl-induced stress. Process Biochem 47:591–596

    Article  CAS  Google Scholar 

  • Jacobo-Velázquez DA, Martínez-Hernández GB, del C. Rodríguez S, Cao C-M, Cisneros-Zevallos L (2011). Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J Agric Food Chem 59:6583–6593

    Article  PubMed  Google Scholar 

  • Jeffery EH, Brown AF, Kurilich AC, Keck AS, Matusheski N, Klein BP, Juvik JA (2003). Variation in content of bioactive compounds in broccoli. J Food Compos Anal 16:323–330

    Article  CAS  Google Scholar 

  • Jessica B, Rinaldo C, Stefano C, Maria Clelia G, Ester S, Aneli U, Renato I (2006). Antioxidant and choleretic properties of Raphanus sativus L. sprout (Kaiware Daikon). extract. J Agric Food Chem 54:9773–9778

    Article  Google Scholar 

  • Kang HM, Saltveit ME (2002). Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol Plant 113:548–556

    Article  Google Scholar 

  • Ku HH, Brunk UT, Sohal RS (1993). Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Lim J-H, Park K-J, Kim B-K, Jeong J-W, Kim H-J (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.). sprout. Food Chem 135:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Lin J-Y, Tang C-Y (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem 101:140–147

    Article  CAS  Google Scholar 

  • Lu K (2008). Effects and Regulation Mechanism of Salt Stress on Photosynthesis and Antioxidant System in Soybean, College of Life Sciences, Zhejiang Univ.

    Google Scholar 

  • Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moreno DA, Carvajal M, López-Berenguer C, García-Viguera C (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal. 41:1508–1522

    Article  CAS  PubMed  Google Scholar 

  • Osawa, T. (1963). Studies on the salt tolerance of vegetable crops with special reference to osmotic effects and specific ion effects. J Jpn Soc Hortic Sci 32:211–223

    Article  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Podsędek A (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Sci Technol 40:1–11

    Article  Google Scholar 

  • Scialabba A, Melati M (1990). The effect of NaCl on growth and xylem differentiation of radish seedlings. Botanical Gazette: 516–521

    Google Scholar 

  • Sekmen AH, Türkan I, Takio S. (2007). Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt- tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    Article  CAS  PubMed  Google Scholar 

  • Shannon M, Grieve C (1998). Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38

    Article  Google Scholar 

  • Shimada K, Fujikawa K, Yahara K, Nakamura T (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Urbanek H, Kuzniak-Gebarowska E, Herka K (1991). Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant (Poland)

    Google Scholar 

  • Volden J, Borge GIA, Bengtsson GB, Hansen M, Thygesen IE, Wicklund T (2008). Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chem 109:595–605

    Article  CAS  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Wang X, Guo R, Wang Q (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019

    Article  CAS  Google Scholar 

  • Zetterström R (2006). C. Eijkman (1858-1930). and Sir FG Hopkins (1861-1947): the dawn of vitamins and other essential nutritional growth factors. Acta Paediatr 95:1331–1333

    Article  Google Scholar 

  • Zhao SZ, Shao JW, Zhi MY (2008). Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa). plants. Chemosphere 70:1500–1509

    Article  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001). Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Funct Plant Biol 28:1055–1061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Li, X., Yang, R. et al. NaCl treatment improves reactive oxygen metabolism and antioxidant capacity in broccoli sprouts. Hortic. Environ. Biotechnol. 57, 640–648 (2016). https://doi.org/10.1007/s13580-016-0140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-016-0140-7

Additional key words

Navigation