Skip to main content
Log in

Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, on growth of Chinese cabbage seedlings and antioxidant enzyme activity in leaves were studied under chilling stress. The results showed that the growth of Chinese cabbage seedlings was strongly inhibited when plants were exposed to chilling, whereas spraying SNP in shoots significantly alleviated the inhibition of growth from chilling stress. The plant height, root length, fresh and dry weight of chilling plants all increased. Chilling caused increases of membrane permeability and antioxidant enzymes activity with the exception of catalase after 8 days of treatment. Meanwhile, chilling also resulted in the decrease of chlorophyll content, accumulation of malondialdehyde (MDA) and protein in leaves. Interestingly, application SNP further enhanced the antioxidant enzyme activities, the chlorophyll and protein content, on the contrary, reduced the member permeability and MDA content. Therefore, it was concluded that NO protected plants from oxidative damage and promoted the growth by enhancing activity of antioxidant enzymes in leaves sufficiently to lower membrane injury. However, exogenous NO had no significant effects on seedling in normal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Almeselmani, M., P.S. Deshmukh, R.K. Sairam, S.R. Kushwaha, and T.P. Singh. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171:382–388.

    Article  CAS  PubMed  Google Scholar 

  • Bellin, D., S. Asai, M. Delledonne, and H. Yoshioka. 2013. Nitric oxide as a mediator for defense responses. Mol. Plant-Microbe Interact. 26:271–277.

    Article  CAS  PubMed  Google Scholar 

  • Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of heat tolerance in wheat. Crop Sci. 21:43–47.

    Article  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I. and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98:1222–1227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark, D., J. Durner, D.A. Navarre, and D.F. Klessig. 2000. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol. Plant-Microbe Interact. 13:1380–1384.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, N.M. and F.Q. Guo. 2005. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci. 10:195–200.

    Article  CAS  PubMed  Google Scholar 

  • Egley, G.H., R.N. Paul, K.C. Vaughn, and S.O. Duke. 1983. Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157:224–232.

    Article  CAS  PubMed  Google Scholar 

  • Esim, N. and O. tici. 2014. Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul. 72:29–38.

    Article  CAS  Google Scholar 

  • Fan, H.F., C.X. Du, L. Ding, and Y.L. Xu. 2013. Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiol. Plant. 35:2707–2719.

    Article  CAS  Google Scholar 

  • Fan, H.F., S.R. Guo, Y.S. Jiao, R.H. Zhang, and J. Li. 2007. Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Front. Agric. China 1:308–314.

    Article  Google Scholar 

  • Fan, Q.J. and J.H. Liu. 2012. Nitric oxide is involved in dehydration/ drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep. 31:145–154.

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59:309–314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo, Z., W. Ou, S. Lu, and Q. Zhong. 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol. Biochem. 44:828–836.

    Google Scholar 

  • Hayat, S., S. Yadav, A.S. Wani, M. Irfan, M.N. Alyemini, and A. Ahmad. 2012. Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Hort. Environ. Biotechnol. 53:362–367.

    Article  CAS  Google Scholar 

  • Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., U. von Rad, and J. Durner. 2002. Nitric oxide induces transcriptional activation of the nitric oxide-tolerent alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923.

    Article  CAS  PubMed  Google Scholar 

  • Kong, W.W., C.Y. Huang, Q. Chen, Y.J. Zou, M.R. Zhao, and J.X. Zhang. 2012. Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis. Biotechnol. Lett. 34:1915–1919.

    Article  PubMed  Google Scholar 

  • Kuk, Y.I., J.S. Shin, N.R. Burgos, T.E. Hwang, O. Han, B.H. Cho, S. Jung, and J.O. Guh. 2003. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci. 43:2109–2117.

    Article  CAS  Google Scholar 

  • Kusvuran, S., S. Ellialtioglu, and Z. Polat. 2013. Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Hort. Environ. Biotechnol. 54:319–325.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y. and E. Haramaty. 1996. Plant aging: the emission of ai]NO and ethylene and effect of NO-releasing compounds on growth of pea (Pisum sativum) foliage. J. Plant Physiol. 148:258–263.

    Article  CAS  Google Scholar 

  • Li, Q.Y., H.B. Niu, J. Yin, M.B. Wang, H.B. Shao, D.Z. Deng, X.X. Chen, J.P. Ren, and Y.C. Li. 2008. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids Surf., B: Biointerfaces 65:220–225.

    Article  CAS  PubMed  Google Scholar 

  • Li, W.X., T.B. Chen, Z.C. Huang, M. Lei, and X.Y. Liao. 2006. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L.. Chemosphere 62: 803–809.

    Article  CAS  PubMed  Google Scholar 

  • Li, X.N., H.D. Jiang, F.L. Liu, J. Cai, T.B. Dai, W.X. Cao, and D. Jiang. 2013. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regul. 71:31–40.

    Article  CAS  Google Scholar 

  • Liu, X.W., L. Wang, L.Y. Liu, D.Y. Guo, and H.Z. Ren. 2011. Alleviating effects of exogenous nitric oxide in cucumber seedling against chilling stress. Afr. J. Biotechnol. 10:4380–4386.

    Google Scholar 

  • Liu, Y.J., H.F. Jiang, Z.G. Zhao, and L.Z. An. 2010. Nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells. Plant Physiol. Biochem. 48:936–944.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  • Palavan-Unsal, N. and D. Arisan. 2009. Nitric oxide signalling in plants. Bot. Rev. 75:203–229.

    Article  Google Scholar 

  • Sarhan, F. and M. Perras. 1987. Accumulation of a high molecular weight protein during cold hardening of wheat (Triticum aestivum L.). Plant Cell Physiol. 28:1173–1179.

    CAS  Google Scholar 

  • Talukdar, D. 2011. Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J. Med. Plant. Res. 5:3619–3628.

    CAS  Google Scholar 

  • Tambussi, E.A., G.G. Bartoli, J.J. Guiamet, J. Beltrano, and J.L. Araus. 2004. Oxidative stress and photo-damage at low temperatures in soybean (Glycine max L. Merr.) leaves. Plant Sci. 167:19–26.

    Article  CAS  Google Scholar 

  • Xu, P.L., Y.K. Guo, J.G. Bai, L. Shang, and X.J. Wang. 2008. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol. Plant. 132:467–478.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H.Q., F.H. Wu, and J.Y. Cheng. 2011. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem. 127:1237–1242.

    Article  CAS  Google Scholar 

  • Yang, J.H., Y. Gao, Y.M. Li, X.H. Qi, and M.F. Zhang. 2008. Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon. Sci. Hort. 118:200–205.

    Article  CAS  Google Scholar 

  • Yin, H., Q. Chen, and M. Yi. 2008. Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul. 54:45–54.

    Article  CAS  Google Scholar 

  • Yu, B.J., S.N. Li, and Y.L. Liu. 2002. Comparison of ion effects of salt injury in soybean seedlings. J. Nanjing Agric. Univ. 25:5–9.

    CAS  Google Scholar 

  • Zaharah, S.S. and Z. Singh. 2011. Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains quality in cold-stored ‘Kensington Pride’ mango. Postharvest Biol. Technol. 60:202–210.

    Article  CAS  Google Scholar 

  • Zhao, L., J.X. He, X.M. Wang, and L.X. Zhang. 2008. Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J. Plant Physiol. 165:182–191.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxia Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Du, C., Xu, Y. et al. Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hortic. Environ. Biotechnol. 55, 159–165 (2014). https://doi.org/10.1007/s13580-014-0161-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-014-0161-z

Additional key words

Navigation