Skip to main content
Log in

Microrhizome induction in Acorus calamus Linn. — An important medicinal and aromatic plant

  • Research Report
  • Tissue Culture/Biotechnology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

An effective protocol for in vitro microrhizome induction was developed for Acorus calamus. The explants, rhizome axillary buds, were cultured on dual phase Murashige and Skoog (MS) medium consisting of agar solidified phase overlaid by liquid fraction of the same medium. In this study, the effects of indole butyric acid (IBA) and — naphthalene acetic acid (NAA) containing 2–10% (w/v) sucrose were examined on microrhizome induction. Best response was observed on the medium supplemented with 2.0 mg L−1 IBA and 60% sucrose under 16/8 hours light/dark photoperiod which produced the maximum rhizome fresh weight (0.82 g) and size (length 4.8 cm; diameter 0.55 cm) in 6 weeks. The microrhizomes had 7–8 buds which were developed independent of season and each segment sprouted into roots and shoots when transplanted to soil. This protocol can be adopted for various applications, viz., large scale production of propagules of elite cytotype, in vitro conservation of the microrhizome, synthesis of secondary metabolites and for studying the biosynthetic pathways of the bioactive molecules present in the rhizomes of this important medicinal and aromatic plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abel, G. 1987. Chromosome damage in human lymphocyte induced by -asarone. Planta Medica 53:251–253.

    Article  PubMed  CAS  Google Scholar 

  • Ahlawat, A., K. Meenu, R. Gandhi, and A. Ashok. 2010. Genetic diversity in Acorus calamus L. as revealed by RAPD markers and its relationship with β-asarone content and ploidy level. Sci. Hortic. 124:294–297.

    Article  CAS  Google Scholar 

  • Anisuzzaman, M., S.A. Sharmin, S.C. Mondal, R. Sultana, M. Khalekuzzaman, I. Alam, and M.F. Alam. 2008. In vitro microrhizome induction in Curcuma zedoaria (Christm.) Roscoe — A conservation prioritized medicinal plant. J. Biol. Sci. 8:1216–1220.

    Article  Google Scholar 

  • Bhat, S.R., K.P.S. Chandel, and A. Kackar. 1994. In vitro induction of rhizomes in Zingiber officinale Roscoe. Ind. J. Exp. Biol. 32:340–344.

    Google Scholar 

  • Chirangini, P., S.K. Sinha, and G.J. Sharma. 2005. In vitro propagation and microrhizome induction in Kaempferia galanga Linn and K. rotunda Linn. Ind. J. Biotech. 4:404–408.

    Google Scholar 

  • Chopra, R.N., S.L. Nayer, and I.C. Chopra. 1992. Glossary of Indian medicinal plants. 3rd ed. Council of Scientific and Industrial Research, New Delhi, India.

    Google Scholar 

  • Cousins, M., J. Adelberg, F. Chen, and J. Rieck. 2007. Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Ind. Crops Prod. 25:129–135.

    Article  Google Scholar 

  • Dušek, K., B. Galambosi, E.B. Hethelyi, K. Korany, and K. Karlová. 2007. Morphological and chemical variations of sweet flag (Acorus calamus L.) in the Czech and Finnish gene bank collection. Hort. Sci. (Prague) 34:17–25.

    Google Scholar 

  • Gamborg, O.L., R.A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Harikrishnan, K.L. and M. Hariharan. 1999. In vitro clonal propagation of sweet flag (Acorus calamus L.) — A medicinal plant, p. 220–222. In: P.D. Kavi Kishor (ed.). Plant tissue culture and biotechnology: Emerging trends. Universities Press, Hyderbad, India.

    Google Scholar 

  • Hutchings, A., A.H. Scott, G. Lewis, and A.B. Cunningham. 1996. Zulu medicinal plants: An inventory. University of Natal Press, Piettermaritzburg, South Africa. p. 22–23.

    Google Scholar 

  • Kim, Y.S. 2008. Evaluation of the water purification capacity in Iris pseudacorus and Acorus calamu. Kor. J. Hort. Sci. Technol. 26:172–176.

    Google Scholar 

  • Lee, J.-H. and T.-H. Han. 2011. Micropropagation of the plantlets derived from seeds in the genus Acorus (A. calamus and A. gramineus). Hort. Environ. Biotechnol. 52:89–94.

    Article  Google Scholar 

  • McGaw, L.J., A.K. Jager, and J. Staden. 2002. Isolation of -asarone, an antibacterial and anti-helminthic compound from Acorus calamus in South Africa. South African J. Bot. 61:31–35.

    Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Planta. 15:473–497.

    Article  CAS  Google Scholar 

  • Nayak, S. 2000. In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb. Plant Growth Regul. 32:41–47.

    Article  CAS  Google Scholar 

  • Patra, A. and A.K. Malik. 1981. Constituents of Acorus calamus: Structure of acoramone carbon-13 NMR spectra of cis- and trans asarone. J. Nat. Prod. 44:668–669.

    Article  CAS  Google Scholar 

  • Raghu, R.V. 1997. Micropropagation of turmeric (Curcuma longa L.) by in vitro microrhizomes, p 27–30. In: S. Edison, K.V. Ramana, B. Saskumar, B.K. Nirmal, and J.E. Santhosh (eds.). Biotechnology of spices, medicinal and aromatic crops. Indian Society for Spices, Calicut, India.

    Google Scholar 

  • Rani, A.S., V.V. Subhadra, and V.D. Reddy. 2000. In vitro propagation of Acorus calamus Linn.— A medicinal plant. Ind. J. Expt. Biol. 38:730–732.

    CAS  Google Scholar 

  • Ross, H.A. and H.V. Davies. 1992. Sucrose metabolism in tubers of potato (Solanum tuberosum L.). Plant Physiol. 98:287–293.

    Article  PubMed  CAS  Google Scholar 

  • Sandhyarani, N., R. Kishor, and G.J. Sharma. 2011. Clonal propagation of triploid Acorus calamus Linn. using dual phase culture system. J. Crop Sci. Biotechnol. 14:85–95.

    Article  Google Scholar 

  • Seo, B.S. and C.M. Park. 2005. Removal effect of nitrogen and phosphorus of Acorus calamus var. angustatus on its growth stage and water-storage time. Kor. J. Environ. Ecol. 19:1–8.

    Google Scholar 

  • Shirgurkar, M.V., C.K. John, and R.S. Nadgauda. 2001. Factors affecting in vitro microrhizome production in turmeric. Plant Cell Tiss. Org. Cult. 64:5–11.

    Article  CAS  Google Scholar 

  • Sunitibala, H., M. Damayanti, and G.J. Sharma. 2001. In vitro propagation and rhizome formation in Curcuma longa Linn. Cytobios. 105:71–82.

    PubMed  CAS  Google Scholar 

  • Thorpe, T.A. 1982. Carbohydrate utilization and metabolism, p. 325–368. In: J.M. Bonga and D.J. Durzan (eds.). Tissue culture in forestry. Martinus Nijhoff Publisher, Dordrecht.

    Google Scholar 

  • Tyagi, R.K., S.R. Bhat, and K.P.S. Chandel. 1998. In vitro conservation strategies for spices crop germplasm Zingiber, Curcuma and Piper species, p. 77–82. In: N.M. Mathew and J.C. Kuruvila (eds.). Developments in plantation crop research. Rubber Research Institute of India, Kerala, India.

    Google Scholar 

  • Venskutonis, P.R. and A. Dagliyte. 2003. Composition of essential oil of sweet flag (Acorus calamus L.) leaves at different growing phases. J. Essenential Oil Res. 15:313–318.

    Article  CAS  Google Scholar 

  • Vojtíšková, L., E. Murzarová, O. Votrubova, H. Čížková and H. Lipavská. 2006. The influence of nitrogen nutrition on the carbohydrate and nitrogen status of emergent macrophyte Acorus calamus L. Hydrobiologia. 563:73–85.

    Article  Google Scholar 

  • Wang, H.Z., Y.G. Cheng, and C.S. Fan. 1998. Review of studies on chemical constitutents and pharmacology of genus Acorus. Acta Bot. Yunn. 5:96–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurumayum Jitendra Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, N.S., Kishor, R. & Sharma, G.J. Microrhizome induction in Acorus calamus Linn. — An important medicinal and aromatic plant. Hortic. Environ. Biotechnol. 53, 410–414 (2012). https://doi.org/10.1007/s13580-012-0096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-012-0096-1

Additional key words

Navigation