Skip to main content
Log in

RETRACTED ARTICLE: Exosomes derived from bone mesenchymal stem cells attenuate myocardial fibrosis both in vivo and in vitro via autophagy activation: the key role of miR-199a-3p/mTOR pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

This article was retracted on 03 August 2022

This article has been updated

Abstract

Autophagy suppression plays key a role during myocardial fibrosis (MF) progression. Exosomes from stem cells attenuate MF. The current study aimed to explain the antifibrosis effects of exosomes by focusing on microRNAs (miRs). MF was induced in rats using transverse aortic constriction (TAC) method and handled with exosomes from bone mesenchymal stem cells (BMSCs). The results of in vivo assays were verified with H9c2 cells. MiR expression profile was determined using microarray detection. The influence of miR-199a-3p modulation in vivo and in vitro on the antifibrosis effect of exosomes then was assessed. Exosomes attenuated MF by inhibiting inflammation, improving tissue structure, and inhibiting fibrosis-related indicators in TAC rats, and the effects were associated with autophagy activation. In H9c2 cells, exosomes suppressed cell viability, induced cell apoptosis, inhibited fibrosis-related indicators, while and the inhibition of autophagy by 3-MA would block the effect of exosomes. Based on the microarray detection, miR-199a-3p level was selected as therapeutic target. The inhibition of miR-199a-3p impaired the antifibrosis effects of exosomes on H9c2 cells, which was associated with autophagy inhibition. Collectively, exosomes from BMSCs exerted antifibrosis effects via the distant transfer of miR-199a-3p to heart tissues, which induced autophagy by inhibiting mTOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA. Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf). 2009;195(3):321–38. https://doi.org/10.1111/j.1748-1716.2008.01936.x.

    Article  CAS  Google Scholar 

  2. Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res. 2011;109(1):86–96. https://doi.org/10.1161/circresaha.111.242974.

    Article  CAS  PubMed  Google Scholar 

  3. Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2015;12(1):18–29. https://doi.org/10.1038/nrcardio.2014.159.

    Article  CAS  PubMed  Google Scholar 

  4. Lu C, Yang Y, Zhu Y, Lv S, Zhang J. An intervention target for myocardial fibrosis: autophagy. Biomed Res Int. 2018;2018:6215916. https://doi.org/10.1155/2018/6215916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bolt AM, Byrd RM, Klimecki WT. Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines. Toxicol Appl Pharmacol. 2010;244(3):366–73. https://doi.org/10.1016/j.taap.2010.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE. 2013;8(4): e60546. https://doi.org/10.1371/journal.pone.0060546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bai J, Yao X, Jiang L, Zhang Q, Guan H, Liu S, et al. Taurine protects against As2O3-induced autophagy in livers of rat offsprings through PPARγ pathway. Sci Rep. 2016;6:27733. https://doi.org/10.1038/srep27733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li MH, Zhang YJ, Yu YH, Yang SH, Iqbal J, Mi QY, et al. Berberine improves pressure overload-induced cardiac hypertrophy and dysfunction through enhanced autophagy. Eur J Pharmacol. 2014;728:67–76. https://doi.org/10.1016/j.ejphar.2014.01.061.

    Article  CAS  PubMed  Google Scholar 

  9. Lin L, Tang C, Xu J, Ye Y, Weng L, Wei W, et al. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II. PLoS ONE. 2014;9(2): e89629. https://doi.org/10.1371/journal.pone.0089629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Bai L, Liu X, Shen W, Tian H, Liu W, et al. Cardiac microvascular functions improved by MSC-derived exosomes attenuate cardiac fibrosis after ischemia-reperfusion via PDGFR-β modulation. Int J Cardiol. 2021. https://doi.org/10.1016/j.ijcard.2021.09.017.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shen D, He Z. Mesenchymal stem cell-derived exosomes regulate the polarization and inflammatory response of macrophages via miR-21-5p to promote repair after myocardial reperfusion injury. Ann Transl Med. 2021;9(16):1323. https://doi.org/10.21037/atm-21-3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nasser MI, Masood M, Adlat S, Gang D, Zhu S, Li G, et al. Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed Pharmacother. 2021;143: 112118. https://doi.org/10.1016/j.biopha.2021.112118.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu X, Yan T, Cheng C, Ma J, Xiang J, Lv Y, et al. Mesenchymal Stem Cells (MSCs) in targeted drug delivery: literature review and exploratory data on migrating and differentiation capacities of bone MSCs into hepatic progenitor cells. Curr Top Med Chem. 2021. https://doi.org/10.2174/1568026621666210708092728.

    Article  PubMed  Google Scholar 

  14. Jin L, Zhang J, Deng Z, Liu J, Han W, Chen G, et al. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res Ther. 2020;11(1):122. https://doi.org/10.1186/s13287-020-01633-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Xia R, Li Z, Zhang L, Xia C, Ai H, et al. Mesenchymal stem cells combined with hepatocyte growth factor therapy for attenuating ischaemic myocardial fibrosis: assessment using multimodal molecular imaging. Sci Rep. 2016;6:33700. https://doi.org/10.1038/srep33700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mokhtari B, Badalzadeh R, Aboutaleb N. Modulation of autophagy as the target of mesenchymal stem cells-derived conditioned medium in rat model of myocardial ischemia/reperfusion injury. Mol Biol Rep. 2021;48(4):3337–48. https://doi.org/10.1007/s11033-021-06359-0.

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Yang R, Guo B, Zhang H, Zhang H, Liu S, et al. Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochem Biophys Res Commun. 2019;514(1):323–8. https://doi.org/10.1016/j.bbrc.2019.04.138.

    Article  CAS  PubMed  Google Scholar 

  18. Racchetti G, Meldolesi J. Extracellular vesicles of mesenchymal stem cells: therapeutic properties discovered with extraordinary success. Biomedicines. 2021. https://doi.org/10.3390/biomedicines9060667.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6(1):127. https://doi.org/10.1186/s13287-015-0116-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masyuk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5. https://doi.org/10.1016/j.jhep.2013.03.028.

    Article  CAS  PubMed  Google Scholar 

  21. Hu J, Wang X, Cui X, Kuang W, Li D, Wang J. Quercetin prevents isoprenaline-induced myocardial fibrosis by promoting autophagy via regulating miR-223-3p/FOXO3. Cell Cycle. 2021;20(13):1253–69. https://doi.org/10.1080/15384101.2021.1932029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Meng C, Han F, Yang J, Wang J, Zhu Y, et al. Vildagliptin attenuates myocardial dysfunction and restores autophagy via miR-21/SPRY1/ERK in diabetic mice heart. Front Pharmacol. 2021;12: 634365. https://doi.org/10.3389/fphar.2021.634365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palmulli R, van Niel G. To be or not to be secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 2018;62(2):177–91. https://doi.org/10.1042/ebc20170076.

    Article  PubMed  Google Scholar 

  24. Matsuno Y, Kanke T, Maruyama N, Fujii W, Naito K, Sugiura K. Characterization of mRNA profiles of the exosome-like vesicles in porcine follicular fluid. PLoS ONE. 2019;14(6): e0217760. https://doi.org/10.1371/journal.pone.0217760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen X, Xu X, Pan B, Zeng K, Xu M, Liu X, et al. miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging (Albany NY). 2018;10(11):3421–37. https://doi.org/10.18632/aging.101656.

    Article  CAS  Google Scholar 

  26. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017;21(10):2491–502. https://doi.org/10.1111/jcmm.13170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ke X, Yang R, Wu F, Wang X, Liang J, Hu X, et al. Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway. Oxid Med Cell Longev. 2021;2021:5529430. https://doi.org/10.1155/2021/5529430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Q, Jin Y, Ye X, Wang W, Deng G, Zhang X. Bone marrow mesenchymal stem cell-derived exosomal MicroRNA-133a restrains myocardial fibrosis and epithelial-mesenchymal transition in viral myocarditis rats through suppressing MAML1. Nanoscale Res Lett. 2021;16(1):111. https://doi.org/10.1186/s11671-021-03559-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuo Y, Qu C, Tian Y, Wen Y, Xia S, Ma M. The HIF-1/SNHG1/miR-199a-3p/TFAM axis explains tumor angiogenesis and metastasis under hypoxic conditions in breast cancer. BioFactors. 2021;47(3):444–60. https://doi.org/10.1002/biof.1702.

    Article  CAS  PubMed  Google Scholar 

  31. Li H, Huang F, Liu XQ, Liu HC, Dai M, Zeng J. LncRNA TUG1 promotes Ewing’s sarcoma cell proliferation, migration, and invasion via the miR-199a-3p-MSI2 signaling pathway. Neoplasma. 2021;68(3):590–601. https://doi.org/10.4149/neo_2021_201110N1198.

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Ma L, Wei R, Ye T, Zhou J, Wen M, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-β pathway. Signal Transduct Target Ther. 2020;5(1):75. https://doi.org/10.1038/s41392-020-0169-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim SW, Kim HI, Thapa B, Nuwormegbe S, Lee K. Critical role of mTORC2-Akt signaling in TGF-β1-induced myofibroblast differentiation of human pterygium fibroblasts. Invest Ophthalmol Vis Sci. 2019;60(1):82–92. https://doi.org/10.1167/iovs.18-25376.

    Article  CAS  PubMed  Google Scholar 

  34. Laurino A, Spinelli V, Gencarelli M, Balducci V, Dini L, Diolaiuti L, et al. Angiotensin-II drives human satellite cells toward hypertrophy and myofibroblast trans-differentiation by two independent pathways. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20194912.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang C, Xie N, Sun T, Ma W, Zhang B, Li W. Xanthohumol inhibits TGF-β1-induced cardiac fibroblasts activation via mediating PTEN/Akt/mTOR signaling pathway. Drug Des Devel Ther. 2020;14:5431–9. https://doi.org/10.2147/dddt.S282206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Zhang H (2019) Regulation of autophagy by mTOR signaling pathway. In: Qin ZH (ed) Autophagy: biology and diseases. Advances in experimental medicine and biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_3

  37. Farag MM, Khalifa AA, Elhadidy WF, Rashad RM. Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(8):1787–801. https://doi.org/10.1007/s00210-021-02087-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There are no funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuncao Fan.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

All the animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Shenyang Bioinform Company (China) (approval no. 20200111) and were carried out in accordance with international guidelines for care and use of laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s13577-022-00761-x

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Wang, Q., Chen, Y. et al. RETRACTED ARTICLE: Exosomes derived from bone mesenchymal stem cells attenuate myocardial fibrosis both in vivo and in vitro via autophagy activation: the key role of miR-199a-3p/mTOR pathway. Human Cell 35, 817–835 (2022). https://doi.org/10.1007/s13577-022-00680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00680-x

Keywords

Navigation