Skip to main content
Log in

Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

As rats develop myocardial infarction (MI) like lesions when injected with large doses of isoproterenol (ISO), this investigation was designed to evaluate the dose-dependent effects of thymoquinone (TQ) on ISO-induced myocardial injury in rats. Adult male rats were divided into negative control, TQ20 (20 mg/kg/day), TQ50 (50 mg/kg/day), ISO positive control, TQ20 + ISO, and TQ50 + ISO groups. In these rats, biochemical, immunobiochemical, and histopathological studies were carried out to evaluate myocardial oxidative stress, inflammation, apoptosis, fibrosis, and autophagy, and the changes in serum cardiac biomarkers. The results showed that TQ pretreatment in ISO-administered rats produced a dose-dependent significant reduction of the myocardial infarct size, markedly reduced the ISO-induced elevation in serum cardiac markers and demonstrated several other important findings related to the cardioprotective efficacy of TQ. First, this study is the first reported research work showing that TQ treatment could increase the myocardial reduced glutathione baseline level, adding an indirect antioxidant effect to its known direct free radical scavenging effect. Second, pretreatment with TQ significantly reduced the markers of myocardial oxidative stress, inflammation, fibrosis, and apoptosis. Third, TQ acted as an autophagy enhancer ameliorating myocardial cell damage and dysfunction. Thus, the morphological and biochemical changes associated with ISO-induced myocardial injury were ameliorated with TQ pretreatment. The extent of this improvement was significantly greater in the TQ50 + ISO group than in the TQ20 + ISO group. The present study, for the first time, demonstrates these dose-dependent effects of TQ in experimentally induced myocardial injury. These findings raise the possibility that TQ may serve as a promising prophylactic cardioprotective therapy for patients who are at risk of developing myocardial injury and against the progression of existent myocardial injury as in cases of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AbdHalim SAS, AbdGhafar N, Jubri Z, Das S (2018) Induction of myocardial infarction in experimental animals: a review. J Clin Diagn Res 12(11):AE01–AE05

    CAS  Google Scholar 

  • Ahmad A, Husain A, Mujeeb M, Khan SA, Ak N, Siddique NA et al (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3:337–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad MF, Ahmad FA, Ashraf SA, Khan SA, Saad HH, Wahab S, Khan MI, et al. (2020) An update knowledge of black seed (Nigella sativa Linn): review of phytochemical constituents and pharmacological properties. https://doi.org/10.1016/j.hermed.2020.100404

  • Ali BH, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phytother Res 17(4):299–305

    Article  PubMed  CAS  Google Scholar 

  • Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J (1998) Apoptosis and myocardial infarction. Basic Res Cardiol 93(Suppl. 3):8–12

    Article  PubMed  Google Scholar 

  • Aoyagi T, Matsui T (2011) The cardiomyocyte as a source of cytokines in cardiac injury. J Cell Sci Ther 2012(S5):003. https://doi.org/10.4172/2157-7013.s5-003

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbeláez LF, Pardo AC, Fantinelli JC, Schinella GR, Mosca SM, Ríos J-L (2018) Cardioprotection and natural polyphenols: an update of clinical and experimental studies. Food Funct 9:6129–6145

    Article  Google Scholar 

  • Awad AS, Abd Al-Haleem EN, El-Bakly WM, Sherief MA (2016) Thymoquinone alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, apoptosis. Naunyn-Schmiedeberg’s Arch Pharmacol 389(4):381–391

    Article  CAS  Google Scholar 

  • Badary OA, Taha RA, Gamal el-Din AM, Abdel-Wahab MH (2003) Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 26(2):87–98

    Article  PubMed  CAS  Google Scholar 

  • Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74(2):184–195

    Article  PubMed  CAS  Google Scholar 

  • Caricati-Neto A, Errante PR, Menezes-Rodrigues FS (2019) Recent advances in pharmacological and non-pharmacological strategies of cardioprotection. Int J Mol Sci 20(16):4002

    Article  PubMed Central  CAS  Google Scholar 

  • de Haan JJ, Smeets MB, Pasterkamp G, Arslan F (2013) Danger signals in the initiation of the inflammatory response after myocardial infarction. Mediat Inflamm 2013:206039

    Google Scholar 

  • Farag MM, Ahmed GO, Shehata RR, Kazem AH (2015) Thymoquinone improves the kidney and liver changes induced by chronic cyclosporine A treatment and acute renal ischemia/ reperfusion in rats. J Pharm Pharmacol 67(5):731–739

    Article  PubMed  CAS  Google Scholar 

  • Galaly SR, Ahmed OM, Mahmoud AM (2014) Thymoquinone and curcumin prevent gentamicin induced liver injury by attenuating oxidative stress, inflammation and apoptosis. J Physiol Pharmacol 65(6):823–832

    PubMed  CAS  Google Scholar 

  • Gerczuk PZ, Kloner RA (2012) An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol 59(11):969–978

    Article  PubMed  Google Scholar 

  • Ghasemi A, Zahediast S (2012) Normality tests for statistical analysis: a guide for non-satisticians. Int J Endocrinol Metab 10(2):486–489

    Article  PubMed  PubMed Central  Google Scholar 

  • Gökce EC, Kahveci R, Gökce A, Cemil B, Aksoy N, Sargon HF et al (2016) Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis. J Neurosurg Spine 24:949–959

    Article  PubMed  Google Scholar 

  • Grimm D, Elsner D, Schunkert H (1998) Development of heart failure following isoproterenol administration in the rat: role of renin angiotensin system. Cardiovasc Res 37:91–100

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14s–22s

    Article  PubMed  CAS  Google Scholar 

  • Hassan Q, Akhtar M, Ahmed S, Ahmad A, Najmi AK (2017) Nigella sativa protects against isoproterenol-induced myocardial infarction by alleviating oxidative stress, biochemical alterations and histological damage. Asian Pac J Trop Biomed 7(4):294–299

    Article  Google Scholar 

  • He F, Zuo L (2015) Redox roles of reactive oxygen species in cardiovascular diseases. Int J Med Sci 16(11):27770–27780

    CAS  Google Scholar 

  • Heusch G, Kleinbongard P, Rassaf T (2019) Cardioprotection beyond infarct size reduction. Circ Res 124:679–680

    Article  PubMed  CAS  Google Scholar 

  • Hasić S, Jadrić R, Kiseljaković E, Mornjaković Z, Winterhalter-Jadrić M (2007) Troponin T and histological characteristics of rat myocardial infarction induced by isoproterenol. Bosn J Basic Med Sci 7(3):212–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Houghton PJ, Zarka R, de lasHeras B, Hoult JR (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 61(1):33–36

    Article  PubMed  CAS  Google Scholar 

  • Hrelia S, Bordoni A, Angeloni C, Leoncini E, Biagi P (2004) Nutritional interventions to counteract oxidative stress in cardiac cells. Ital J Biochem 53(4):157–163

    PubMed  CAS  Google Scholar 

  • Ismail M, Al-Naqeep G, Chan KW (2010) Nigella sativa thymoquinone-rich fraction greately improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med 48(5):664–672

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Cucrvo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206

    Article  PubMed  CAS  Google Scholar 

  • Kruk J, Aboul-Enein HY, Kładna A, Bowser JE (2019) Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 53(5):497–521

    Article  PubMed  CAS  Google Scholar 

  • Leone A (2017) Myocardial infarction: pathological relevance and relationship with coronary risk factors. Curr Pharm Des 23:3205

    PubMed  CAS  Google Scholar 

  • Lie JT, Pairolero PC, Holley KE, Titus JL (1975) Macroscopic enzyme-mapping verification of large, homogeneous, experimental myocardial infarcts of predictable size and location in dogs. J Thorac Cardiovasc Surg 69(4):599–605

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sun Y, Zhang Y, Yang G, Guo L, Zhao Y et al (2019) Role of thymoquinone in cardiac damage caused by sepsis from BALB/c mice. Inflammation 42(2):516–525

    Article  PubMed  CAS  Google Scholar 

  • Milei J, Nunez RG, Rapaport M (1978) Pathogenesis of isoproterenol-induced myocardial lesions: its reation to human coagulative myocytolysis. Cardiology 63(3):139–151

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  PubMed  CAS  Google Scholar 

  • Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Murray CJL et al (2014) Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 Study. Circulation 129(14):1483–1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento BR, Brant LCC, Marino BCA, Passaglia LG, Ribeiro ALP (2019) Implementing myocardial infarction systems of care in low/middle-income countries. Heart 105(1):20–26

    Article  PubMed  Google Scholar 

  • Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    Article  PubMed  CAS  Google Scholar 

  • O’Neal WT, Griffin WF, Kent SD, Virag JAI (2012) Cellular pathways of death and survival in acute myocardial. J Clin Exp Cardiol S 6:003

    Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  • Ojha S, Azimullah S, Mohanraj R, Sharma C, Yasin J, Arya DS et al (2015) Thymoquinone protects against myocardial ischemic injury by mitigating oxidative stress and inflammation. Evid Based Complement Alternat Med 2015:143629

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojha S, Goyal S, Kumari S, Arya DS (2012) Pyruvate attenuates cardiac dysfunction and oxidative stress in isoproterenol-induced cardiotoxicity. Exp Toxicol Pathol 64(4):393–399

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Kar A, Banerjee T, Sharma N (2012) Combined effects of quercetin and atenolol in reducing isoproterenol-induced cardiotoxicity in rats: possible mediation through scavenging free radicals. Cardiovasc Toxicol 12:235–242

    Article  PubMed  CAS  Google Scholar 

  • Pei Z, Hu J, Bai Q, Liu B, Cheng D, Liu H et al (2018) Thymoquinone protects against cardiac damage from doxorubicin-induced heart failure in Sprague-Dawley rats. RSC Adv 8(26):14633–14639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson RJ, Murphy SD (1975) Effect of glutathione depletion on tissue deposition of methylmercury in rats. Toxicol Appl Pharmacol 31(3):505–519

    Article  PubMed  CAS  Google Scholar 

  • Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17(4):291–306

    Article  PubMed  CAS  Google Scholar 

  • Sahak MK, Kabir N, Abbas G, Draman S, Hashim NH, Hasan DS (2016) The role of Nigella and its active constituent in learning and memory. Evid Based Complement Alternat Med 2016:6075679

    Article  PubMed  PubMed Central  Google Scholar 

  • Saravanan G, Prakash J (2004) Effect of garlic (Allium sativum) on lipid peroxidation in experimental myocardial infarction in rats. J Ethnopharmacol 94(1):155–158

    Article  PubMed  CAS  Google Scholar 

  • Shabana A, El-Menyar A, Asim M, Al-Azzeh H, Al Thani H (2013) Cardiovascular benefits of black cumin (Nigella sativa). Cardiovasc Toxicol 13(1):9–21

    Article  PubMed  Google Scholar 

  • Shakeri F, Khazaei M, Boskabady MH (2018) Cardiovascular effects of Nigella sativa L and its constituents. Indian J Pharm Sci 80(6):971–983

    Article  CAS  Google Scholar 

  • Somaiya R, Patel H, Handave M (2015) Potential future therapies of myocardial ischemia-reperfusion injury. Indian J Cardio Biol Clin Sci 2:105–112

    Google Scholar 

  • Sutherland FJ, Hearse DJ (2000) The isolated blood and perfusion fluid perfused heart. Pharmacol Res 41(6):613–627

    Article  PubMed  CAS  Google Scholar 

  • Tommasino C, Marconi M, Ciarlo L, Matarrese P, Malorni W (2015) Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids. Apoptosis 20(5):645–657

    Article  PubMed  Google Scholar 

  • Upaganlawar A, Gandhi H, Balaraman R (2011) Isoproterenol induced myocardial infarction: protective role of natural products. J Pharmacol Toxicol 6(1):1–17

    Article  CAS  Google Scholar 

  • Wang X, Guo Z, Ding Z, Mehta JL (2018) Inflammation, autophagy, and apoptosis after myocardial infarction. J Am Heart Associat 7(9):e008024

    Article  CAS  Google Scholar 

  • Wang Z, Zhang J, Ren T, Dong Z (2016) Targeted metabolomic profiling of cardioprotective effect of Ginkgo biloba L. extract on myocardial ischemia in rats. Phytomedicine 23(6):621–631

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2013) WHO traditional medicine strategy: 2014–2023 World Health Organization: Geneva, Switzerland. https://apps.who.int/iris/handle/10665/92455

  • World Health Organization, Regional Office for the Western Pacific, Manila (1993) Research guidelines for evaluating the safety and efficacy of herbal medicines. https://apps.who.int/iris/handle/10665/207008

  • Xiao J, Ke ZP, Shi Y, Zeng Q, Cao Z (2018) The cardioprotective effect of thymoquinone on ischemia-reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. J Cell Biochem 119(9):7212–7217

    Article  PubMed  CAS  Google Scholar 

  • Xie M, Morales CR, Lavandero S, Hill JA (2011) Tuning flux: autophagy as a target of heart disease therapy. Curr Opin Cardiol 26(3):216–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong X, Borrelli F, de Sa FA, Ashfaq T, Feng B (2014) Herbal medicines for cardiovascular diseases. Evid Based Complement Alternat Med 2014:809741

    Article  PubMed  PubMed Central  Google Scholar 

  • Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F (2019) Nigella sativa L (black cumin): a promising natural remedyfor a wide range of illnesses. Evid Based Complement Alternat Med 2019:1528635

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Knapton A, Lipshultz SE, Weaver JL, Herman EH (2008) Isoproterenol-induced cardiotoxicity in Sprague-Dawley rats: correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicol Pathol 36(2):277–278

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Gu S, Li X, Tan J, Liu S, Jiang Y et al (2017) Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 8(2):e2577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zilinyi R, Czompa A, Czegledi A, Gajtko A, Pituk D, Lekli I et al (2018) The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy. Molecules 23(5):E1184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M.F. conceived the idea of this work and made its design. A.A.K. and W.F.E. conducted the experimental work. R.M.R. carried out the histopathological work. M.M.F. analyzed and interpreted the data and wrote the article. All authors read and approved the article before submission. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Mahmoud M. Farag.

Ethics declarations

Ethics approval

The protocol of this study was approved by the Animal Care and Use Committee of the Medical Research Institute, Alexandria University (Alexandria, Egypt). All experimental procedures related to the rats were carried out according to the instructions of the European Directive 2010/63/EU for animal experimentation and the guidelines of the Animal Care and Use Committee, Medical Research Institute, Alexandria University.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Excel files showing original data (XLSX 28 KB)

210_2021_2087_MOESM2_ESM.docx

Supplementary file2 Myocardial infarction area measurement and determination of microtubule-associated protein light chain 3 (LC3) level (DOCX 370 KB)

Supplementary file3 Checking the normality of data using Shapiro-Wilk test (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, M.M., Khalifa, A.A., Elhadidy, W.F. et al. Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis. Naunyn-Schmiedeberg's Arch Pharmacol 394, 1787–1801 (2021). https://doi.org/10.1007/s00210-021-02087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02087-1

Keywords

Navigation