Skip to main content
Log in

Ectopic expression of AtICE1 and OsICE1 transcription factor delays stress-induced senescence and improves tolerance to abiotic stresses in tobacco

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inducer of CBF Expression 1 (ICE1) is an upstream regulator of cold-responsive genes in Arabidopsis thaliana and various crop plants. The ice1 mutant is impaired in expression of several transcription factors (TFs) and other genes involved in abiotic stress signaling, suggesting a role beyond cold tolerance. In this study, we examined the abiotic stress responses of transgenic Arabidopsis thaliana constitutively over-expressing AtICE1. These transgenic plants exhibited enhanced tolerance to NaCl and methyl viologen (MV)-induced oxidative stresses. To confirm this enhanced tolerance of ICE1 in a heterologous system, transgenic tobacco over-expressing AtICE1 and OsICE1 were developed. ICE1 over-expressing tobacco transgenic exhibited tolerance to NaCl- and PEG-induced stresses at seedling stage. The tobacco transgenic plants exhibited tolerant phenotype under the situations that mimicked natural drought condition. The improved drought tolerance observed in this study is linked to the maintenance of cell membrane stability and inhibition of stress-induced senescence. Higher expression of homologs of ICE1 target genes such as COR47, HVA22, ERD10, HSF1, EREBP3 and reduced expression of WRKY6, a positive regulator of senescence, indicated that ICE1 expression activated diverse cellular tolerance mechanisms. The study demonstrated that ICE1 is an important positive regulator of cellular tolerance mechanisms associated with multiple abiotic stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ICE1:

Inducer of CBF Expression 1

CBF:

C-repeat/dehydration-responsive element Binding Factor

bHLH:

Basic Helix-Loop-Helix

COR:

COld-Regulated genes

ERD:

Early Responsive to Dehydration

HSF:

Heat Shock Factor

EREBP:

Ethylene Responsive Element Binding Protein

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M (2008) Structure and functional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol l49:1237–1249

    Article  Google Scholar 

  • Beltagi MS (2008) Molecular responses of Bt transgenic corn (Zea mays L.) plans to salt (NaCl) stress. Aust J Crop Sci 2:57–63

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Chen Y, Jiang J, Chen S, Chen F, Guan Z, Fang W (2012) The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Rep 31:1747–1758

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcription and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yan S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–228

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103:8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng XM, Zhao Q, Zhao LL, Qiao Y, Xie XB, Li HF, Yao YX, You CX, Hao YJ (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98–103

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann N, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135:1710–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in Rice and Arabidopsis. Plant Cell 141:1167–1184

    CAS  Google Scholar 

  • Lin Y, Zheng H, Zhang Q, Liu C, Zhang Z (2014) Functional profiling of EcaICE1 transcription factor gene from Eucalyptus camaldulens is involved in cold response in tobacco plants. J Plant Biochem Biotechnol 23:141–150

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Duan L, Zhang J, Zhang Z, Mi G, Ren H (2010) Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Sci Hortic 124:29–33

    Article  CAS  Google Scholar 

  • Ma T, Chen R, Yu R, Zeng H, Zhang D (2009) Differential global genomic changes in rice root in response to low-, middle-, and high-osmotic stresses. Acta Physiol Plant 31:773–785

    Article  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat Shock transcription factor 1 abolishes thermos tolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruthvi V, Rama N, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L). PLoS One 9:e111152

    Article  PubMed  PubMed Central  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual 3rd edition. Cold Spring Harbor, Laboratory Press

    Google Scholar 

  • Sedigheh GH, Mortazavian M, Norouzian D, Atyabi M, Akbarzadeh A, Hasanpoor K, Ghorbani M (2011) Oxidative stress and leaf senescence. BMC Res Notes 4:477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar AS, Varghese SM, Shameer K, Karaba NN, Udayakumar M, Sowdhamini R (2008) STIF: Identification of stress-upregulated transcription factor binding sites in Arabidopsis thaliana. Bioinformation 2:431–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Towill LE, Mazur P (1975) Studies on the reduction of 2,3,5-triphenyl tetrazolium chloride as a viability assay for plant tissue cultures. Can J Bot 53:1097–1102

    Article  Google Scholar 

  • Tripathy JN, Zhang J, Robin S, Nguyen Thuy T, Nguyen HT (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100:1197–1202

    Article  CAS  Google Scholar 

  • Wang Y, Jiang CJ, Li YY, Wei CL, Deng WW (2012) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep 31:27–34

    Article  PubMed  Google Scholar 

  • Xiang DJ, Hu XY, Zhang Y, Yin KD (2008) Over-expression of ICE1 gene in transgenic rice improves cold tolerance. Rice Sci 15:173–178

    Article  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Li F, Wang J, Ma Y (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J Plant Physiol 166:1–11

    Article  Google Scholar 

  • Zhou M, Wu L, Liang J, Shen C, Lin J (2012) Cold-induced modulation of CbICE53 gene activates endogenous genes to enhance acclimation in transgenic tobacco. Mol Breeding 30:p1611

    Article  Google Scholar 

Download references

Acknowledgments

This project is partially supported by the Department of Biotechnology, Government of India to NK. Work in VC Lab was supported by in house grant No. IARI: PPH: 09:02(3). NB thanks Pioneer Hi-Bred International Inc., for Pioneer Hi-Bred Research International Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karaba N. Nataraja.

Ethics declarations

We declared that no competing interests exist (financial or non-financial). In this study there is no involvement of any human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budhagatapalli, N., Narasimhan, R., Rajaraman, J. et al. Ectopic expression of AtICE1 and OsICE1 transcription factor delays stress-induced senescence and improves tolerance to abiotic stresses in tobacco. J. Plant Biochem. Biotechnol. 25, 285–293 (2016). https://doi.org/10.1007/s13562-015-0340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0340-8

Keywords

Navigation