Skip to main content
Log in

Differential global genomic changes in rice root in response to low-, middle-, and high-osmotic stresses

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We used the Affymetrix rice genome array to study the gene expression change in response to low- (T1 treatment), middle- (T2 treatment), and high-osmotic stresses (T3 treatment) in rice root at the transcription level. Our experiment results showed that osmotic stress could induce some genes in rice root with a total of 2,082 genes being regulated transcriptionally by at least one osmotic stress. There was little overlap between the genes responding to the low-, middle-, and high-osmotic stresses. A total of 190 transcripts overlapped among all three osmotic stress treatments with 112 genes being up-regulated and 78 transcripts being down-regulated. A total of 113, 159, and 132 transcription factors (TFs) transcripts were regulated at the transcription level by T1, T2, and T3 treatments, respectively, and the expression of 296 genes encoding TFs was changed in response to at least one osmotic stress treatment. 47, 49, and 32 TFs transcripts overlapped between T1 and T2, T1 and T3, and T2 and T3 treatments, and 20 TFs overlapped among all treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • Aharoni A, Dixita S, Jetterb R, Thoenesa E, Arkela GV, Pereiraa A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480. doi:10.1105/tpc.104.022897

    Article  PubMed  CAS  Google Scholar 

  • Allison LA (2000) The role of sigma factors in plastid transcription. Biochimie 82(6–7):537–548. doi:10.1016/S0300-9084(00)00611-8

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Oka A (2003) Cytokinin signal transduction in plant cells. J Plant Res 116(3):221–231. doi:10.1007/s10265-003-0094-6

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung WJ, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960. doi:10.1126/science.1090022

    Article  PubMed  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200. doi:10.1016/j.cub.2005.05.048

    Article  PubMed  CAS  Google Scholar 

  • Gergely I, Korcak RF, Faust M (1980) Polyethylene glycol induced water stress effects on apple seedlings. Am Soc Hortic Sci 105:854–857

    CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648. doi:10.1104/pp.006478

    Article  PubMed  CAS  Google Scholar 

  • Heath LS, Ramakrishnan N, Sederoff RR, Whetten RW, Chevone BI, Struble CA, Jouenne VY, Dawei Chen, Zyl LV, Grene R (2002) Studying the functional genomics of stress responses in loblolly pine with the Express microarray experiment management system. Comp Funct Genomics 3:226–243. doi:10.1002/cfg.169

    Article  PubMed  CAS  Google Scholar 

  • Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Montagu MV, Inze D, Beeckman T (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci USA 104:5146–5151. doi:10.1073/pnas.0308702101

    Article  Google Scholar 

  • Kaufmann MR, Eckard AN (1971) Evaluation of water stress control with polyethylene glycols by analysis of guttation. Plant Physiol 47(4):453–456. doi:10.1104/pp.47.4.453

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87. doi:10.1111/j.1365-313X.2004.02192.x

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141. doi:10.1104/pp.008532

    Article  PubMed  CAS  Google Scholar 

  • Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Physiologist 179:116–128

    Article  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351. doi:10.1104/pp.104.059147

    Article  PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48:551–573. doi:10.1023/A:1014875215580

    Article  CAS  Google Scholar 

  • Paget MS, Helmann JD (2003) The sigma70 family of sigma factors. Genome Biol 4(1):203–224. doi:10.1186/gb-2003-4-1-203

    Article  PubMed  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic in land plants family in rice and its evolution. Phytochemistry 65:1879–1893. doi:10.1016/j.phytochem.2004.06.023

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052. doi:10.1093/pcp/pch118

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasugac M, Yamaguchi-Shinozakic K, Carnincid P, Hayashizakid Y, Shinozaki K (2001) Monitoring the expression patterns of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi:10.1016/S1369-5266(03)00092-X

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498. doi:10.1105/tpc.104.022699

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132. doi:10.1016/j.copbio.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38. doi:10.1371/journal.pbio.0030038

    Article  PubMed  Google Scholar 

  • Zhou JL, Wang XF, Jiao YL, Qin YH, Liu XG, He K, Chen C, Ma LG, Wang J, Xiong LZ, Zhang QF, Fan LM, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608. doi:10.1007/s11103-006-9111-1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Innovation Grant of the Chinese Academy of Sciences (No. 0551033) and the National Nature Science Foundation of China (Grant no. 30671273). During the preparation of this paper helpful comments were provided by Dr. Xia Xin-jie and Dr. Pedro Rocha (Institute of Subtropical Agriculture, The Chinese Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-lai Zeng or Duan-pin Zhang.

Additional information

Communicated by M. Stobiecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 The overlap genes induced by three osmotic stress treatments in rice root under microarray data (DOC 93 kb)

11738_2009_291_MOESM2_ESM.doc

Table S2 GO analysis of overlap genes regulated by three osmotic stress treatments in rice root under microarray data (DOC 108 kb)

Table S3 Thirteen genes sequences of quantitative real-time PCR primers (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Tc., Chen, Rj., Yu, Rr. et al. Differential global genomic changes in rice root in response to low-, middle-, and high-osmotic stresses. Acta Physiol Plant 31, 773–785 (2009). https://doi.org/10.1007/s11738-009-0291-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0291-6

Keywords

Navigation