Skip to main content
Log in

Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant microRNAs (miRNAs) are non-coding RNAs (19–24 nucleotides long) that play a critical role in the sequence-specific regulation of target gene transcripts. In this study, 32 miRNAs from wheat (Triticum aestivum L.) (TaMIRs) currently released in the miRBase database were subjected to expression pattern analysis under conditions of normal inorganic phosphate (Pi) supply and Pi deprivation stress. Semi-quantitative and quantitative reverse transcriptase polymerase chain reaction analysis revealed that 9 TaMIRs responded to Pi starvation: TaMIR159b, TaMIR167, TaMIR399, TaMIR408, TaMIR1122, TaMIR1125, TaMIR1135, TaMIR1136, and TaMIR1136 were up-regulated, whereas TaMIR408 was down-regulated. Small RNA blot analysis confirmed these results. Target prediction analysis indicated that the low Pi-responsive TaMIRs possessed variable target genes, ranging from none in TaMIR399 and TaMIR1122 to more than 20 in TaMIR1136. The target genes randomly selected from each low Pi-responsive TaMIR (except TaMIR399 and TaMIR1122) demonstrated an opposite expression pattern to the TaMIR, suggesting that the target genes were transcriptionally regulated by miRNA-mediated pathways. The target genes that interacted with the low Pi-responsive TaMIRs could be classified into diverse gene families, such as those involving transcription regulation, cell cycling, chromosome establishment, signal transduction, primary metabolism, phytohormone response, trafficking, defense response, and protein degradation. This study helps elucidate the plant regulatory mechanisms in response to low Pi signaling via the miRNA-mediated pathways in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

TaMIR:

wheat microRNA

RT-PCR:

Reverse transcription polymerase chain reaction

qRT-PCR:

Quantitative reverse transcripttion polymerase chain reaction

RNAi:

RNA interference

RISC:

RNA-induced silencing complex

PSR:

Phosphorus-starvation responsive

CS:

Chinese spring

DNase:

Deoxyribonuclease

CK:

Non-stress control

TC:

Tentative consensus

BLAST:

Basic local alignment search tool

AGO:

argonaute

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2003) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed  CAS  Google Scholar 

  • Cui Q, Yu Z, Purisima EO, Wang E (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2:46

    Article  PubMed  Google Scholar 

  • de Carvalho F, Gheysen G, Kushnir S, Van Montagu M, Inze D, Castresana C (1992) Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J 11:2595–2602

    PubMed  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  Google Scholar 

  • Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    Article  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: Ancient microRNA target sequences in plants. Nature 428:485–486

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Article  Google Scholar 

  • Gao N, Su Y, Min J, Shen W, Shi W (2010) Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil 334:123–136

    Article  CAS  Google Scholar 

  • Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant 138:226–237

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Long S-X, Zhao F-H, Bao J-X, Guo C-J, Xiao K (2008) Analysis of P use efficiencies across the released cultivars in North China and determination of biochemical criteria for evaluation of phosphorus efficiency in wheat. J Plant Gen Resour 9(4):506–510

    CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Luan F, Zhu H, Shao Y, Chen A, Lu C, Luo Y, Zhu B (2009) Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Sci China C ser- Life Sci 52:1091–1100

    Article  CAS  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed  Google Scholar 

  • Jeong DH, German MA, Rymarquis LA, Thatcher SR, Green PJ (2009) Abiotic stress-associated miRNAs: detection and functional analysis. Method Mol Biol 592:203–230

    Article  Google Scholar 

  • Kong Y, Elling AA, Chen B, Deng XW (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Amer J Plant Sci 1:69–76

    Article  CAS  Google Scholar 

  • Kuo HF, Chiou TJ (2011) The role of microRNAs in phosphorus deficiency signaling. Plant Physiol 156:1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139–143

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  PubMed  CAS  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu X, Zhou W, Sun J, Tong Y, Liu W, Li ZS, Wang P, Yao S (1995) Technique of wheat breeding for efficiently utilizing soil nutrient elements. Sci China Ser B 38:1313–1320

    CAS  Google Scholar 

  • Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou J (2010) Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Lin SI, Chiou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60:1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Périn C, Ko SS (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–2131

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( {2} -_{\text{T}}^{{\Delta \Delta C}} \) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in populus. Plant J 55:131–151

    Article  PubMed  CAS  Google Scholar 

  • Lundmark M, Kørner CJ, Nielsen TH (2010) Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays. Physiol Plant 140:57–68

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 83–116

    Chapter  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Primig M, Trnovsky J, Matzke AJ (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649

    PubMed  CAS  Google Scholar 

  • Millar AA, Waterhouse PM (2005) Plant and animal microRNAs: similarities and differences. Funct Integr Genomics 5:129–135

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139:129–143

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    Article  PubMed  CAS  Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779:743–748

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is Mediated by Downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  Google Scholar 

  • Tenllado F, Llave C, Diaz-Ruiz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  PubMed  CAS  Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    Article  PubMed  CAS  Google Scholar 

  • Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:427–447

    Article  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y, Mao L (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L. and Brachypodium distachyon L.). Beauv Funct Integr Genom 9(4):499–511

    Article  CAS  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Dev 132:3657–3668

    Article  CAS  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  Google Scholar 

  • Yan X, Wu P, Ling H, Xu G, Xu F, Zhang Q (2006) Plant nutriomics in China: an overview. Ann Bot (Lond) 98:473–482

    Article  CAS  Google Scholar 

  • Yin ZJ, Shen FF (2010) Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res 9:1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol 167:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Guo C, Li C, Xiao K (2008) Cloning, characterizatio and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Front Agric China 2(2):141–149

    Article  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Bioche Biophys Resea Commun 354:585–590

    Article  CAS  Google Scholar 

  • Zhu YY, Zeng HQ, Dong CX, Yin XM, Shen QR, Yang ZM (2010) MicroRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.). Plant Sci 178:23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China’s Major Projects for Transgenic Breeding (Grant number 2009ZX08009-011B) and the Key Crop Growth Regulation Laboratory of Hebei Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

Additional information

Xiaolei Zhao and Xiaoman Liu contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Online (DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Liu, X., Guo, C. et al. Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation. J. Plant Biochem. Biotechnol. 22, 113–123 (2013). https://doi.org/10.1007/s13562-012-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0117-2

Keywords

Navigation