Skip to main content
Log in

Shear Viscosity of Pionic and Nucleonic Components from Their Different Possible Mesonic and Baryonic Thermal Fluctuations

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Owing to the Kubo relation, the shear viscosities of pionic and nucleonic components have been evaluated from their corresponding retarded correlators of viscous stress tensor in the static limit, which become non-divergent only for the non-zero thermal widths of the constituent particles. In the real-time thermal field theory, the pion and nucleon thermal widths have respectively been obtained from the pion self-energy for different meson, baryon loops, and the nucleon self-energy for different pion-baryon loops. We have found non-monotonic momentum distributions of pion and nucleon thermal widths, which have been integrated out by their respective Bose-enhanced and Pauli-blocked phase space factors during evaluation of their shear viscosities. The viscosity to entropy density ratio for this mixed gas of pion-nucleon system decreases and approaches its lower bound as the temperature and baryon chemical potential increase within the relevant domain of hadronic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  2. H. Song, U.W. Heinz, Phys. Lett. B. 658, 279 (2008)

    Article  ADS  Google Scholar 

  3. V. Roy, A.K. Chaudhuri, B. Mohanty, Phys. Rev. C. 86, 014902 (2012)

    Article  ADS  Google Scholar 

  4. H. Niemi, G.S. Denicol, P. Huovinen, E. Molnár, D.H. Rischke, Phys Rev. Lett. 106, 212302 (2011). Phys. Rev. C 86, 014909 (2012)

    Article  ADS  Google Scholar 

  5. B. Schenke, S. Jeon, C. Gale, Phys. Lett. B. 702, 59 (2011)

    Article  ADS  Google Scholar 

  6. V. Roy, B. Mohanty, A.K. Chaudhuri, J. Phys. G. 40, 065103 (2013)

    Article  ADS  Google Scholar 

  7. Z. Xu, C. Greiner, H. Stocker, Phys. Rev. Lett. 101, 082302 (2008)

    Article  ADS  Google Scholar 

  8. G. Ferini, M. Colonna, M. Di Toro, V. Greco, Phys. Lett. B. 670, 325 (2009)

    Article  ADS  Google Scholar 

  9. V. Greco, M. Colonna, M. Di Toro, G. Ferini, Prog. Part. Nucl. Phys. 65, 562 (2009)

    Article  ADS  Google Scholar 

  10. J. Xu, C.M. Ko, Phys. Rev. C. 84, 014903 (2011)

    Article  ADS  Google Scholar 

  11. P. Zhuang, J. Hufner, S.P. Klevansky, L. Neise, Phys. Rev. D. 51, 3728 (1995)

    Article  ADS  Google Scholar 

  12. P. Rehberg, S.P. Klevansky, J. Hufner, Nucl. Phys. A. 608, 356 (1996)

    Article  ADS  Google Scholar 

  13. L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006)

    Article  ADS  Google Scholar 

  14. T. Hirano, M. Gyulassy Nucl, Phys. A. 769, 71 (2006)

    Google Scholar 

  15. J.I. Kapusta. “Relativistic Nuclear Collisions”, Landolt-Bornstein New Series, Vol. I/23, ed. R. Stock (Springer-Verlag, Berlin Heidelberg, 2010)

    Google Scholar 

  16. J.W. Chen, M. Huang, Y.H. Li, E. Nakano, D.L. Yang, Phys. Lett. B. 670, 18 (2008)

    Article  ADS  Google Scholar 

  17. P. Chakraborty, J.I. Kapusta, Phys. Rev. C. 83, 014906 (2011)

    Article  ADS  Google Scholar 

  18. J.W. Chen, C.T. Hsieh, H.H. Lin, Phys. Lett. B. 701, 327 (2011)

    Article  ADS  Google Scholar 

  19. F. Karsch, E. Laermann, A. Peikert, Phys. Lett. B. 478, 447 (2000)

    Article  ADS  Google Scholar 

  20. A. Nakamura, S. Sakai, Phys. Rev. Lett. 94, 072305 (2005). Nucl. Phys. A 774 (2006) 775

    Article  ADS  Google Scholar 

  21. H.B. Meyer, Phys. Rev. D. 76, 101701 (2007)

    Article  ADS  Google Scholar 

  22. S. Sakai, A. Nakamura, PoS LAT. 2007, 221 (2007)

    Google Scholar 

  23. P. Kovtun, D.T. Son, O.A. Starinets, Phys. Rev. Lett. 94 , 111601 (2005)

    Article  ADS  Google Scholar 

  24. P. Arnold, G.D. Moore, L.G. Yaffe, JHEP. 0011, 001 (2000). JHEP 0305 (2003) 05

    Article  ADS  Google Scholar 

  25. G. Policastro, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 87, 081601 (2001)

    Article  ADS  Google Scholar 

  26. G.D. Moore, JHEP. 0105, 039 (2001)

    Article  ADS  Google Scholar 

  27. M.A. Valle Basagoiti, Phys. Rev. D. 66, 045005 (2002)

    Article  ADS  Google Scholar 

  28. G. Aarts, J.M. Martnez Resco, JHEP. 0211, 022 (2002)

    Article  ADS  Google Scholar 

  29. S. Ghosh, A. Lahiri, S. Majumder, R. Ray, S.K. Ghosh, Phys. Rev. C. 88, 068201 (2013)

    Article  ADS  Google Scholar 

  30. A. Dobado, S.N. Santalla, Phys. Rev. D. 65, 096011 (2002)

    Article  ADS  Google Scholar 

  31. A. Dobado, F.J. Llanes-Estrada, Phys. Rev. D. 69, 116004 (2004)

    Article  ADS  Google Scholar 

  32. A. Muronga, Rev. Phys. C. 69, 044901 (2004)

    Article  Google Scholar 

  33. E. Nakano. arXiv:hep-ph/0612255

  34. J.W. Chen, Y.H. Li, Y.F. Liu, E. Nakano, Phys. Rev. D. 76, 114011 (2007)

    Article  ADS  Google Scholar 

  35. D. Fernandez-Fraile, A. Gomez Nicola, Eur. Phys. J. C. 62, 37 (2009). Int. J. Mod. Phys. E 16, 3010 (2007); Eur. Phys. J. A 31, 848 (2007)

    Article  ADS  Google Scholar 

  36. K. Itakura, O. Morimatsu, H. Otomo, Phys. Rev. D. 77, 014014 (2008)

    Article  ADS  Google Scholar 

  37. M.I. Gorenstein, M. Hauer, O.N. Moroz, Phys. Rev. C. 77, 024911 (2008)

    Article  ADS  Google Scholar 

  38. J.N. Hostler, J. Noronha, C. Greiner, Phys. Rev. Lett. 103, 172302 (2009). Phys. Rev. C 86, 024913 (2012)

    Article  ADS  Google Scholar 

  39. S. Pal, Lett. Phys. B. 684, 211 (2010)

    Article  Google Scholar 

  40. A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl.Phys. A. 845, 106 (2010). Phys. Atom. Nucl. 74, 650 (2011)

    Article  ADS  Google Scholar 

  41. A. Wiranata, M. Prakash, Phys. Rev. C. 85, 054908 (2012)

    Article  ADS  Google Scholar 

  42. M. Buballa, K. Heckmann, J. Wambach, Prog. Part. Nucl. Phys. 67, 348 (2012)

    Article  ADS  Google Scholar 

  43. R. Lang, N. Kaiser, W. Weise, Eur. Phys. J. A. 48, 109 (2012)

    Article  ADS  Google Scholar 

  44. S. Mitra, S. Ghosh, S. Sarkar, Phys. Rev. C. 85, 064917 (2012)

    Article  ADS  Google Scholar 

  45. S. Mitra, U. Gangopadhyaya, S. Sarkar. arXiv:1504.00184 [hep-ph]

  46. J. Peralta-Ramos, G. Krein, Int. J. Mod. Phys. Conf. Ser. 18, 204 (2012). Phys. Rev. C 84, 044904 (2011)

    Article  Google Scholar 

  47. A. Wiranata, V. Koch, M. Prakash, X.N. Wang. arXiv:1307.4681 [hep-ph]

  48. G.S. Denicol, C. Gale, S. Jeon, J. Noronha, Phys. Rev. C. 88, 064901 (2013)

    Article  ADS  Google Scholar 

  49. N. Demir, S.A. Bass, Phys. Rev. Lett. 102, 172302 (2009)

    Article  ADS  Google Scholar 

  50. G.P. Kadam, H. Mishra, Nucl.Phys. A. 934, 133 (2014)

    Article  ADS  Google Scholar 

  51. S. Gavin, Phys. Nucl. A. 435, 826 (1985)

    Article  ADS  Google Scholar 

  52. M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rep. 227, 321 (1993)

    Article  ADS  Google Scholar 

  53. J.L. Anderson, H.R. Witting, Physica. 74, 466 (1973). Physica 74 (1973) 489

    Article  ADS  Google Scholar 

  54. V.M. Galitsky, Yu.B. Ivanov, V.A. Khangulian, Sov. J. Nucl. Phys. 30, 401 (1979)

    Google Scholar 

  55. P. Danielewicz, Lett. Phys. B. 146, 168 (1984)

    Article  Google Scholar 

  56. R. Hakim, L. Mornas, P. Peter, H.D. Sivak, Phys. Rev. D. 46, 4603 (1992)

    Article  ADS  Google Scholar 

  57. R. Hakim, L. Mornas, Phys. Rev. C. 47, 2846 (1993)

    Article  ADS  Google Scholar 

  58. S. Ghosh, G. Krein, S. Sarkar, Phys. Rev. C. 89, 045201 (2014)

    Article  ADS  Google Scholar 

  59. S. Ghosh, Rev. Phys. C. 90, 025202 (2014)

    Article  Google Scholar 

  60. D.N. Zubarev. Non-equilibrium statistical thermodynamics (Consultants Bureau, New York, 1974)

    Google Scholar 

  61. R. Kubo, Phys. J. Soc. Jpn. 12, 570 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  62. S. Ghosh, Int. J. Mod. Phys. A. 29, 1450054 (2014)

    Article  ADS  Google Scholar 

  63. S. Sarkar, Advances in High Energy Physics, vol. 2013, Article ID 627137 (2013)

  64. M. Post, S. Leupold, U. Mosel, Nucl. Phys. A. 741, 81 (2004)

    Article  ADS  Google Scholar 

  65. S. Ghosh, J. Phy. G. 41, 095102 (2014)

    Article  ADS  Google Scholar 

  66. F. Klingl, N. Kaiser, W. Weise, Z. Phys. A. 356, 193 (1996)

    Article  ADS  Google Scholar 

  67. R. Rapp, J. Wambach, Nucl. Phys. A. 573, 626 (1994)

    Article  ADS  Google Scholar 

  68. E.H. Kennard. Kinetic Theory of Gases, with an Introduction to Statistical Mechanics (McGraw-Hill, New York, 1938)

    Google Scholar 

  69. D.T. Son, A.O. Starinets, Ann. Rev. Nucl. Part. Sci. 57, 95 (2007)

    Article  ADS  Google Scholar 

  70. A. Sinha, R.C. Myers, Nucl. Phys. A. 295c, 830 (2009)

    Google Scholar 

  71. S. Ghosh, T. Peixoto, V. Roy, F. Serna, G. Krein. arXiv:1507.08798 [nucl-th]

Download references

Acknowledgments

This work is financed by Fundação de Amparo à Pesquisa do Estado de São Paulo- FAPESP, Grant Nos. 2012/16766-0. I am very grateful to Prof. Gastao Krein for his academic and non-academic support during my postdoctoral period in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Ghosh.

Additional information

This work is financed by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, Grant Nos. 2012/16766-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S. Shear Viscosity of Pionic and Nucleonic Components from Their Different Possible Mesonic and Baryonic Thermal Fluctuations. Braz J Phys 45, 687–698 (2015). https://doi.org/10.1007/s13538-015-0352-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0352-9

Keywords

Navigation