Skip to main content
Log in

Viscous coefficients and thermal conductivity of a \(\pi K N\) gas mixture in the medium

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The temperature and density dependence of the relaxation times, thermal conductivity, shear viscosity and bulk viscosity for a hot and dense gas consisting of pions, kaons and nucleons have been evaluated in the kinetic theory approach. The in-medium cross-sections for \(\pi \pi \), \(\pi K\) and \(\pi N\) scatterings were obtained by using complete propagators for the exchanged \(\rho \), \(\sigma \), \(K^*\) and \(\Delta \) excitations derived using thermal field theoretic techniques. Notable deviations can be observed in the temperature dependence of \(\eta \), \(\zeta \) and \(\lambda \) when compared with corresponding calculations using vacuum cross-sections usually employed in the literature. The value of the specific shear viscosity \(\eta /s\) is found to be in agreement with available estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and has no associated experimental data.]

References

  1. J. Adam et al. (STAR) (2019). arXiv:1906.02740 [hep-ex]

  2. K. Aamodt et al. (ALICE), Phys. Rev. Lett.105, 252302 (2010). arXiv:1011.3914 [nucl-ex]. https://doi.org/10.1103/PhysRevLett.105.252302

  3. S. Sarkar, H. Satz, B. Sinha, Lect. Notes Phys. 785, 1 (2010). https://doi.org/10.1007/978-3-642-02286-9

    Article  ADS  Google Scholar 

  4. L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006). https://doi.org/10.1103/PhysRevLett.97.152303

    Article  ADS  Google Scholar 

  5. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008). https://doi.org/10.1103/PhysRevC.78.034915

    Article  ADS  Google Scholar 

  6. A. Dobado, F.J. Llanes-Estrada, J.M. Torres-Rincon, Phys. Rev. D 80, 114015 (2009). https://doi.org/10.1103/PhysRevD.80.114015

    Article  ADS  Google Scholar 

  7. V. Ozvenchuk, O. Linnyk, M.I. Gorenstein, E.L. Bratkovskaya, W. Cassing, Phys. Rev. C 87, 064903 (2013). https://doi.org/10.1103/PhysRevC.87.064903

    Article  ADS  Google Scholar 

  8. C. Sasaki, K. Redlich, Nucl. Phys. A 832, 62 (2010). https://doi.org/10.1016/j.nuclphysa.2009.11.005. arXiv:0811.4708 [hep-ph]

    Article  ADS  Google Scholar 

  9. P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). https://doi.org/10.1103/PhysRevLett.94.111601

    Article  ADS  Google Scholar 

  10. D. Kharzeev, K. Tuchin, JHEP 09, 093 (2008). https://doi.org/10.1088/1126-6708/2008/09/093. arXiv:0705.4280 [hep-ph]

    Article  ADS  Google Scholar 

  11. J.-W. Chen, J. Wang, Phys. Rev. C 79, 044913 (2009). https://doi.org/10.1103/PhysRevC.79.044913

    Article  ADS  Google Scholar 

  12. D. Fernández-Fraile, A.G. Nicola, Phys. Rev. Lett. 102, 121601 (2009). https://doi.org/10.1103/PhysRevLett.102.121601

    Article  ADS  Google Scholar 

  13. T. Ullrich, B. Wyslouch, J.W. Harris, Nucl. Phys. A904–905, 1c (2013)

    Google Scholar 

  14. S.R. De Groot, Relativistic Kinetic Theory. Principles and Applications. In: W.A. Van Leeuwen, C.G. Van Weert (eds) (1980)

  15. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics, Studies in Soviet science (Consultants Bureau, 1974). https://books.google.co.in/books?id=SQy3AAAAIAAJ

  16. S. Gavin, Nucl. Phys. A 435, 826 (1985). https://doi.org/10.1016/0375-9474(85)90190-3

    Article  ADS  Google Scholar 

  17. M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rep. 227, 321 (1993). https://doi.org/10.1016/0370-1573(93)90092-R

    Article  ADS  Google Scholar 

  18. D. Davesne, Phys. Rev. C 53, 3069 (1996). https://doi.org/10.1103/PhysRevC.53.3069

    Article  ADS  Google Scholar 

  19. A. Dobado, S.N. Santalla, Phys. Rev. D 65, 096011 (2002). https://doi.org/10.1103/PhysRevD.65.096011

    Article  ADS  Google Scholar 

  20. A. Dobado, F.J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004). https://doi.org/10.1103/PhysRevD.69.116004

    Article  ADS  Google Scholar 

  21. J.-W. Chen, Y.-H. Li, Y.-F. Liu, E. Nakano, Phys. Rev. D 76, 114011 (2007). https://doi.org/10.1103/PhysRevD.76.114011

    Article  ADS  Google Scholar 

  22. K. Itakura, O. Morimatsu, H. Otomo, Phys. Rev. D 77, 014014 (2008). https://doi.org/10.1103/PhysRevD.77.014014

    Article  ADS  Google Scholar 

  23. D. Fernandez-Fraile, A. Gomez Nicola, Proceedings, Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2008): Estes Park, USA, August 18–23, 2008, Eur. Phys. J. C 62, 37 (2009). arXiv:0902.4829 [hep-ph]. https://doi.org/10.1140/epjc/s10052-009-0935-0

    Article  ADS  Google Scholar 

  24. J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. Lett. 103, 172302 (2009). https://doi.org/10.1103/PhysRevLett.103.172302

    Article  ADS  Google Scholar 

  25. N. Demir, S.A. Bass, Phys. Rev. Lett. 102, 172302 (2009). https://doi.org/10.1103/PhysRevLett.102.172302

    Article  ADS  Google Scholar 

  26. C. Sasaki, K. Redlich, Phys. Rev. C 79, 055207 (2009). https://doi.org/10.1103/PhysRevC.79.055207

    Article  ADS  Google Scholar 

  27. A. Dobado, J.M. Torres-Rincon, Phys. Rev. D 86, 074021 (2012). https://doi.org/10.1103/PhysRevD.86.074021

    Article  ADS  Google Scholar 

  28. A. Dobado, F.J. Llanes-Estrada, J.M. Torres Rincon, Quarks and nuclear physics. In: Proceedings of 4th International Conference, QNP 2006, Madrid, Spain, June 5–10, 2006. arXiv:hep-ph/0702130

  29. D. Fernandez-Fraile, A. Gomez Nicola, Hadron physics. In: Proceedings, 10th International Workshop, Florianopolis, Brazil, April 26–31, 2007

  30. M. Greif, F. Reining, I. Bouras, G.S. Denicol, Z. Xu, C. Greiner, Phys. Rev. E 87, 033019 (2013). https://doi.org/10.1103/PhysRevE.87.033019

  31. G.S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu, D.H. Rischke, C. Greiner, Phys. Rev. D 89, 074005 (2014). https://doi.org/10.1103/PhysRevD.89.074005. arXiv:1207.6811 [nucl-th]

    Article  ADS  Google Scholar 

  32. P. Danielewicz, M. Gyulassy, Phys. Rev. D 31, 53 (1985). https://doi.org/10.1103/PhysRevD.31.53

    Article  ADS  Google Scholar 

  33. A. Hosoya, K. Kajantie, Nucl. Phys. B 250, 666 (1985). https://doi.org/10.1016/0550-3213(85)90499-7

    Article  ADS  Google Scholar 

  34. P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 11, 001 (2000). https://doi.org/10.1088/1126-6708/2000/11/001. arXiv:hep-ph/0010177

    Article  ADS  Google Scholar 

  35. P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 05, 051 (2003). https://doi.org/10.1088/1126-6708/2003/05/051. arXiv:hep-ph/0302165

    Article  ADS  Google Scholar 

  36. M. Rahaman, S. Ghosh, S. Ghosh, S. Sarkar, J.-E. Alam, Phys. Rev. C 97, 035201 (2018). https://doi.org/10.1103/PhysRevC.97.035201

    Article  ADS  Google Scholar 

  37. S. Ghosh, G. Krein, S. Sarkar, Phys. Rev. C 89, 045201 (2014). https://doi.org/10.1103/PhysRevC.89.045201. arXiv:1401.5392 [nucl-th]

    Article  ADS  Google Scholar 

  38. S. Ghosh, Phys. Rev. C 90, 025202 (2014). https://doi.org/10.1103/PhysRevC.90.025202. arXiv:1503.06927 [nucl-th]

    Article  ADS  Google Scholar 

  39. S. Ghosh, Braz. J. Phys. 45, 687 (2015). https://doi.org/10.1007/s13538-015-0352-9. arXiv:1507.01705 [nucl-th]

    Article  ADS  Google Scholar 

  40. L. Pitaevskii, E. Lifshitz, Physical Kinetics

  41. F. Reif, Fundamentals of Statistical and Thermal Physics/[by] F. Reif, International Student ed (McGraw-Hill, Kogakusha, 1965), p. 651

    Google Scholar 

  42. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570

    Article  ADS  Google Scholar 

  43. S. Jeon, Phys. Rev. D 52, 3591 (1995). https://doi.org/10.1103/PhysRevD.52.3591. arXiv:hep-ph/9409250

    Article  ADS  Google Scholar 

  44. S. Jeon, L.G. Yaffe, Phys. Rev. D 53, 5799 (1996). https://doi.org/10.1103/PhysRevD.53.5799. arXiv:hep-ph/9512263

    Article  ADS  Google Scholar 

  45. E. Lu, G.D. Moore, Phys. Rev. C 83, 044901 (2011). https://doi.org/10.1103/PhysRevC.83.044901

    Article  ADS  Google Scholar 

  46. S. Mitra, S. Sarkar, Phys. Rev. D 87, 094026 (2013). https://doi.org/10.1103/PhysRevD.87.094026

    Article  ADS  Google Scholar 

  47. S. Mitra, S. Sarkar, Phys. Rev. D 89, 054013 (2014). https://doi.org/10.1103/PhysRevD.89.054013

    Article  ADS  Google Scholar 

  48. U. Gangopadhyaya, S. Ghosh, S. Sarkar, S. Mitra, Phys. Rev. C 94, 044914 (2016). https://doi.org/10.1103/PhysRevC.94.044914

    Article  ADS  Google Scholar 

  49. R. Lang, N. Kaiser, W. Weise, Eur. Phys. J. A 48, 109 (2012). https://doi.org/10.1140/epja/i2012-12109-3. arXiv:1205.6648 [hep-ph]

    Article  ADS  Google Scholar 

  50. A. Wiranata, V. Koch, M. Prakash, X.N. Wang, Phys. Rev. C 88, 044917 (2013). https://doi.org/10.1103/PhysRevC.88.044917. arXiv:1307.4681 [hep-ph]

    Article  ADS  Google Scholar 

  51. S. Weinberg, Astrophys. J. 168, 175 (1971). https://doi.org/10.1086/151073

    Article  ADS  Google Scholar 

  52. P. Polak, W. van Leeuwen, S. de Groot, Physica 66, 455 (1973). https://doi.org/10.1016/0031-8914(73)90294-2

    Article  ADS  Google Scholar 

  53. A. Wiranata, M. Prakash, Phys. Rev. C 85, 054908 (2012). https://doi.org/10.1103/PhysRevC.85.054908. arXiv:1203.0281 [nucl-th]

    Article  ADS  Google Scholar 

  54. S. Plumari, A. Puglisi, F. Scardina, V. Greco, Phys. Rev. C 86, 054902 (2012). https://doi.org/10.1103/PhysRevC.86.054902. arXiv:1208.0481 [nucl-th]

    Article  ADS  Google Scholar 

  55. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  56. S. Mitra, S. Ghosh, S. Sarkar, Phys. Rev. C 85, 064917 (2012). https://doi.org/10.1103/PhysRevC.85.064917

    Article  ADS  Google Scholar 

  57. O. Krehl, C. Hanhart, S. Krewald, J. Speth, Phys. Rev. C 62, 025207 (2000). https://doi.org/10.1103/PhysRevC.62.025207

    Article  ADS  Google Scholar 

  58. C.M. Ko, D. Seibert, Phys. Rev. C 49, 2198 (1994). https://doi.org/10.1103/PhysRevC.49.2198

    Article  ADS  Google Scholar 

  59. S. Ghosh, S. Sarkar, S. Mitra, Phys. Rev. D 95, 056010 (2017). https://doi.org/10.1103/PhysRevD.95.056010

    Article  ADS  Google Scholar 

  60. S. Mallik, S. Sarkar, Hadrons at Finite Temperature (Cambridge University Press, Cambridge, 2016). https://doi.org/10.1017/9781316535585

    Book  MATH  Google Scholar 

  61. M.L. Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511721700

    Book  Google Scholar 

  62. H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B 378, 95 (1992). https://doi.org/10.1016/0550-3213(92)90005-V

    Article  ADS  Google Scholar 

  63. R. Venugopalan, M. Prakash, Nucl. Phys. A 546, 718 (1992). https://doi.org/10.1016/0375-9474(92)90005-5

    Article  ADS  Google Scholar 

  64. P. Romatschke, S. Pratt (2014). arXiv:1409.0010 [nucl-th]

  65. J.-B. Rose, J.M. Torres-Rincon, A. Schäfer, D.R. Oliinychenko, H. Petersen, Phys. Rev. C 97, 055204 (2018). https://doi.org/10.1103/PhysRevC.97.055204

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Ghosh.

Additional information

Communicated by Ralf Rapp

Appendices

Appendix A: Thermodynamic quantities

The thermodynamic quantities like energy density, number density, pressure and enthalpy of the three component system consisting of pions, kaons and nucleons can be expressed in terms of the sum of series of Bessels function as \(S_n^\alpha (z_\pi )\), \(R_n^\alpha (z_K)\) and \(T_n^\alpha (z_N)\), where \(z_\pi =m_\pi /T\), \(z_K=m_K /T\) and \(z_N=m_N /T\). These quantities are given as:

$$\begin{aligned} n_\pi= & {} g_\pi \int \frac{d^3p_\pi }{(2\pi )^3} f_\pi ^{(0)} (p_\pi )= \left( \frac{g_\pi }{2 \pi ^2}\right) z_\pi ^2 T^3 S_2^1 (z_\pi ), \nonumber \\\end{aligned}$$
(A1)
$$\begin{aligned} P_\pi= & {} g_\pi \int \frac{d^3p_\pi }{(2\pi )^3} \frac{\vec {p_\pi }^2}{3E_{p_\pi }} f_\pi ^{(0)} (p_\pi )\nonumber \\= & {} \left( \frac{g_\pi }{2 \pi ^2}\right) z_\pi ^2 T^4 S_2^2 (z_\pi ), \end{aligned}$$
(A2)
$$\begin{aligned} n_\pi e_\pi= & {} g_\pi \int \frac{d^3p_\pi }{(2\pi )^3} E_{p_\pi } f_\pi ^{(0)}(p_\pi )\nonumber \\= & {} \left( \frac{g_\pi }{2 \pi ^2}\right) z_\pi ^2 T^4 \left[ z_\pi S_3^1(z_\pi )-S_2^2(z_\pi )\right] , \end{aligned}$$
(A3)
$$\begin{aligned} n_\pi h_\pi= & {} n_\pi z_\pi \frac{S_3^1(z_\pi )}{S_2^1(z_\pi )} \end{aligned}$$
(A4)

where \(E_{p_\pi }=\sqrt{\vec {p}_\pi ^2+m_\pi ^2}\) and \(f_\pi ^{(0)}(p_\pi )=[e^{\beta (E_{p_\pi }-\mu _\pi )}-1]^{-1}\). Making use of the formula

$$\begin{aligned} {[}a-1]^{-1}=\sum _{n=1}^{\infty }~(a^{-1})^n~~~\text {for}~~ \left| a\right| <1, \end{aligned}$$
(A5)

the distribution function can be expanded, so that the three momentum integrals in the above equations could be analytically performed and expressed in terms of the following infinite series

$$\begin{aligned} S_n^\alpha (z_\pi )=\sum _{k=1}^{\infty }~e^{{k\mu _\pi }/T}~k^{-\alpha }~K_n(kz_\pi ) \end{aligned}$$
(A6)

where \(K_n(x)\) is the modified Bessel function of order n whose integral representation is

$$\begin{aligned} K_n(x)=\frac{2^n n!}{(2n)!~x^n}\int _{x}^{\infty }d\tau (\tau ^2-x^2)^{n-\frac{1}{2}}e^{-\tau } \end{aligned}$$
(A7)

or

$$\begin{aligned} K_n(x)=\frac{2^n n! (2n-1)}{(2n)!x^n}\int _{x}^{\infty }\tau ~ d\tau (\tau ^2-x^2)^{n-\frac{3}{2}}~e^{-\tau }. \end{aligned}$$
(A8)

The expression for thermodynamic quantities mentioned above will be similar for kaons and nucleons except the term \(S_n^\alpha (z_\pi )\) will be replaced by \(R_n^\alpha (z_K)\) for kaons and \(T_n^\alpha (z_N)\) for nucleons where

$$\begin{aligned} R_n^\alpha (z_K)=\sum _{k=1}^{\infty }~e^{{k\mu _K}/T}~k^{-\alpha }~K_n(kz_K) \end{aligned}$$
(A9)

and

$$\begin{aligned} T_n^\alpha (z_N)=\sum _{k=1}^{\infty }~(-1)^{k-1}~e^{{k\mu _N}/T}~k^{-\alpha }~K_n(kz_N). \end{aligned}$$
(A10)

Appendix B: Useful expressions

The transport equation for each species is given by

$$\begin{aligned} p^\mu \partial _\mu f_k^{(0)}(x,p)=-\frac{\delta f(x,p)}{\tau _k} E_k \end{aligned}$$
(B1)

where on the right hand side of the equation, we have made use of relaxation time approximation. The time and space derivatives (in the local rest frame) present in the left hand side of the above equation will be replaced by the derivatives of the thermodynamics parameters. The equation then reduces to

$$\begin{aligned}&(p_k\cdot u)\left[ \frac{p_k\cdot u}{T^2}DT + D\left( \frac{\mu _k}{T}\right) ~-~\frac{p_k^\mu }{T}Du_\mu \right] \nonumber \\&\qquad + p^\mu \left[ \frac{p_k\cdot u}{T^2} \nabla _\mu T + \nabla _\mu \left( \frac{\mu _k}{T}\right) -\frac{p_k^\nu }{T}\nabla _\mu u_\nu \right] \nonumber \\&\quad =-\frac{\delta f(x,p)}{\tau _k} E_k. \end{aligned}$$
(B2)

The conservation equations

$$\begin{aligned} \partial _\mu N_k^\mu= & {} 0,~~~ Dn_k=-n_k \partial _\mu u^\mu ~~\text {and}~~ \sum _{k} n_k De_k \nonumber \\= & {} -\sum _{k}P_k\partial _\mu u^\mu \end{aligned}$$
(B3)

with \(N^\mu =n U^\mu \) and total \(P=p_\pi +p_K+p_N\) can be expanded in terms of the derivative with respect to temperature and chemical potential over temperature as

$$\begin{aligned}&\frac{\partial n_\pi }{\partial T} DT + \frac{\partial n_\pi }{\partial (\mu _\pi /T)}D\left( \frac{\mu _\pi }{T}\right) + \frac{\partial n_K}{\partial (\mu _K/T)}D\left( \frac{\mu _K}{T}\right) \nonumber \\&\quad + \frac{\partial n_N}{\partial (\mu _N/T)}D\left( \frac{\mu _N}{T}\right) =-n_\pi ~\partial _\mu u^\mu ~, \end{aligned}$$
(B4)
$$\begin{aligned}&\frac{\partial n_K}{\partial T} DT + \frac{\partial n_\pi }{\partial (\mu _\pi /T)}D\left( \frac{\mu _\pi }{T}\right) ~+~\frac{\partial n_K}{\partial (\mu _K/T)}D\left( \frac{\mu _K}{T}\right) \nonumber \\&\quad + \frac{\partial n_N}{\partial (\mu _N/T)}D\left( \frac{\mu _N}{T}\right) = -n_K~\partial _\mu u^\mu ~, \end{aligned}$$
(B5)
$$\begin{aligned}&\frac{\partial n_N}{\partial T} DT+\frac{\partial n_\pi }{\partial (\mu _\pi /T)}D\left( \frac{\mu _\pi }{T}\right) +\frac{\partial n_K}{\partial (\mu _K/T)}D\left( \frac{\mu _K}{T}\right) \nonumber \\&\quad + \frac{\partial n_N}{\partial (\mu _N/T)}D\left( \frac{\mu _N}{T}\right) = -n_N~\partial _\mu u^\mu ~, \\&\quad \left[ n_\pi \frac{\partial e_\pi }{\partial T}+n_K\frac{\partial e_K}{\partial T}+n_N\frac{\partial e_N}{\partial T} \right] +n_\pi \frac{\partial e_\pi }{\partial (\mu _\pi /T)} D\left( \frac{\mu _\pi }{T}\right) \nonumber \\&\quad + n_K\frac{\partial e_K}{\partial (\mu _K/T)}D\left( \frac{\mu _K}{T}\right) +n_N\frac{\partial e_N}{\partial (\mu _N/T)}D\left( \frac{\mu _N}{T}\right) = -P\partial _\mu u^\mu ~.\nonumber \end{aligned}$$
(B6)

Making use of the expressions obtained in Appendix A in the above equations and then solving for DT, \(D\left( \frac{\mu _\pi }{T}\right) \), \(D\left( \frac{\mu _K}{T}\right) \) and \(D\left( \frac{\mu _N}{T}\right) \) we get

$$\begin{aligned}&DT = T~(1-\gamma ')~\partial _\mu u^\mu ~, \end{aligned}$$
(B7)
$$\begin{aligned}&TD\left( \frac{\mu _\pi }{T}\right) = [(\gamma _\pi ''-1)-T\gamma _\pi ''']~\partial _\mu u^\mu ~, \end{aligned}$$
(B8)
$$\begin{aligned}&TD\left( \frac{\mu _K}{T}\right) = [(\gamma _K''-1)-T\gamma _K''']~\partial _\mu u^\mu ~, \end{aligned}$$
(B9)
$$\begin{aligned}&TD\left( \frac{\mu _N}{T}\right) = {[}(\gamma _N''-1)-T\gamma _N''']~\partial _\mu u^\mu \end{aligned}$$
(B10)

where

$$\begin{aligned} \gamma '= & {} \frac{1}{X}\Bigg [g_\pi \left\{ z_\pi ^3\left( 4R_2^0S_2^0T_2^0S_3^1+R_2^0T_2^0S_3^0S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_\pi ^4\left( R_2^0T_2^0(S_2^0)^2-R_2^0T_2^0(S_3^0 )^2\frac{}{}\right) \right\} \nonumber \\&+g_K\left\{ z_K^3\left( 4R_2^0S_2^0T_2^0R_3^1+S_2^0T_2^0R_3^0R_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_K^4\left( S_2^0T_2^0(R_2^0)^2-S_2^0T_2^0(R_3^0)^2 \frac{}{}\right) \right\} \nonumber \\&+\, g_N\left\{ z_N^3\left( 4R_2^0S_2^0T_2^0T_3^1+R_2^0S_2^0T_3^0T_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_N^4\left( R_2^0S_2^0(T_2^0)^2-R_2^0S_2^0(T_3^0)^2\frac{}{}\right) \right\} \Bigg ], \end{aligned}$$
(B11)
$$\begin{aligned} \gamma _\pi ''= & {} \frac{1}{X}\Bigg [g_\pi \left\{ -5z_\pi ^2R_2^0T_2^0(S_2^1)^2+z_\pi ^3\left( 3R_2^0S_2^0T_2^0S_3^1+3R_2^0T_2^0S_3^0S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_\pi ^4\left( R_2^0T_2^0(S_2^0)^2-R_2^0T_2^0(S_3^0)^2\frac{}{}\right) \right\} \nonumber \\&+g_K\left\{ -z_K^2S_2^0T_2^0(R_2^1)^2 +\, z_K^3\left( 3R_2^0S_2^0T_2^0R_3^1+2R_3^0S_2^0T_2^0R_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_K^4\left( S_2^0T_2^0(R_2^0)^2-S_2^0T_2^0(R_3^0)^2\frac{}{}\right) \right\} \nonumber \\&+\, g_N\left\{ -z_N^2R_2^0S_2^0(T_2^1)^2+z_N^3\left( 3R_2^0S_2^0T_2^0T_3^1+2R_2^0S_2^0T_3^0T_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_N^4\left( R_2^0S_2^0(T_2^0)^2-R_2^0S_2^0(T_3^0)^2\frac{}{}\right) \right\} \Bigg ], \end{aligned}$$
(B12)
$$\begin{aligned} \gamma _\pi '''= & {} \frac{1}{X}\Bigg [g_\pi \left\{ z_\pi ^4R_2^0T_2^0S_2^0S_2^1\frac{}{}\right\} +\, g_K\left\{ z_K^3\left( 4R_2^0T_2^0S_2^1R_3^1+T_2^0R_3^0R_2^1S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_K^4\left( T_2^0S_2^1(R_2^0)^2-T_2^0S_2^1(R_3^0)^2 \frac{}{}\right) \right. \nonumber \\&\left. -z_\pi z_K^2T_2^0S_3^0(R_2^1)^2 +z_\pi z_K^3\left( R_3^0S_3^0T_2^0R_2^1-R_2^0S_3^0T_2^0R_3^1\frac{}{}\right) \right\} \nonumber \\&+\, g_N\left\{ z_N^3\left( 4R_2^0T_2^0S_2^1T_3^1+R_2^0T_3^0S_2^1T_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_N^4\left( R_2^0S_2^1(T_2^0)^2-R_2^0S_2^1(T_3^0)^2\frac{}{}\right) -z_\pi z_N^2R_2^0S_3^0(T_2^1)^2 \right. \nonumber \\&\left. +\, z_\pi z_N^3\left( R_2^0S_3^0T_3^0T_2^1-R_2^0S_3^0T_2^0T_3^1\frac{}{}\right) \right\} \Bigg ] , \end{aligned}$$
(B13)
$$\begin{aligned} \gamma _K''= & {} \frac{1}{X}\Bigg [g_\pi \left\{ -z_\pi ^2R_2^0T_2^0(S_2^1)^2+z_\pi ^3\left( 3R_2^0S_2^0T_2^0S_3^1+2R_2^0T_2^0S_3^0S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_\pi ^4\left( R_2^0T_2^0(S_2^0)^2-R_2^0T_2^0(S_3^0)^2\frac{}{}\right) \right\} \nonumber \\&+\, g_K\left\{ -5z_K^2S_2^0T_2^0(R_2^1)^2 +z_K^3\left( 3R_2^0S_2^0T_2^0R_3^1+3R_3^0S_2^0T_2^0R_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_K^4\left( S_2^0T_2^0(R_2^0)^2-S_2^0T_2^0(R_3^0)^2\frac{}{}\right) \right\} \nonumber \\&+\, g_N\left\{ -z_N^2R_2^0S_2^0(T_2^1)^2+z_N^3\left( 3R_2^0S_2^0T_2^0T_3^1+2R_2^0S_2^0T_3^0T_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_N^4\left( R_2^0S_2^0(T_2^0)^2-R_2^0S_2^0(T_3^0)^2\frac{}{}\right) \right\} \Bigg ] , \end{aligned}$$
(B14)
$$\begin{aligned} \gamma _K'''= & {} \frac{1}{X}\Bigg [g_\pi \left\{ z_\pi ^3\left( 4T_2^0S_2^0R_2^1S_3^1+T_2^0S_3^0R_2^1S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_\pi ^4\left( T_2^0R_2^1(S_2^0)^2 -T_2^0R_2^1(S_3^0)^2\frac{}{}\right) -z_Kz_\pi ^2T_2^0R_3^0(S_2^1)^2 \right. \nonumber \\&\left. +\, z_Kz_\pi ^3\left( T_2^0R_3^0S_3^0S_2^1 - T_2^0R_3^0S_2^0S_3^1\frac{}{}\right) \right\} +g_K\left\{ z_k^4S_2^0T_2^0R_2^0R_2^1\frac{}{}\right\} \nonumber \\&+\, g_N\left\{ z_N^3\left( 4T_2^0S_2^0R_2^1T_3^1+S_2^0T_3^0R_2^1T_2^1\frac{}{}\right) \right. \nonumber \\&+\, z_N^4\left( S_2^0R_2^1(T_2^0)^2-S_2^0R_2^1(T_3^0)^2\frac{}{}\right) -z_K z_N^2S_2^0R_3^0(T_2^1)^2\nonumber \\&\left. +\, z_Kz_N^3\left( S_2^0R_3^0T_3^0T_2^1-S_2^0R_3^0T_2^0T_3^1\frac{}{}\right) \right\} \Bigg ] , \end{aligned}$$
(B15)
$$\begin{aligned} \gamma _N''= & {} \frac{1}{X}\Bigg [g_\pi \left\{ -z_\pi ^2R_2^0T_2^0(S_2^1)^2+z_\pi ^3\left( 3R_2^0S_2^0T_2^0S_3^1+2R_2^0T_2^0S_3^0S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_\pi ^4\left( R_2^0T_2^0(S_2^0)^2-R_2^0T_2^0(S_3^0)^2\frac{}{}\right) \right\} \nonumber \\&+\, g_K\left\{ -z_K^2S_2^0T_2^0(R_2^1)^2 +z_K^3\left( 3R_2^0S_2^0T_2^0R_3^1+2R_3^0S_2^0T_2^0R_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_K^4\left( S_2^0T_2^0(R_2^0)^2-S_2^0T_2^0(R_3^0)^2\frac{}{}\right) \right\} \nonumber \\&+\, g_N\left\{ -5z_N^2R_2^0S_2^0(T_2^1)^2+z_N^3\left( 3R_2^0S_2^0T_2^0T_3^1+3R_2^0S_2^0T_3^0T_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_N^4\left( R_2^0S_2^0(T_2^0)^2-R_2^0S_2^0(T_3^0)^2\frac{}{}\right) \right\} \Bigg ] , \end{aligned}$$
(B16)
$$\begin{aligned} \gamma _N'''= & {} \frac{1}{X}\Bigg [g_\pi \left\{ z_\pi ^3\left( 4S_2^0R_2^0T_2^1S_3^1+R_2^0S_3^0T_2^1S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_\pi ^4\left( R_2^0T_2^1(S_2^0)^2 -R_2^0T_2^1(S_3^0)^2\frac{}{}\right) -z_Nz_\pi ^2R_2^0T_3^0(S_2^1)^2 \right. \nonumber \\&\left. +\, z_Nz_\pi ^3\left( R_2^0S_3^0T_3^0S_2^1 - R_2^0S_2^0T_3^0S_3^1\frac{}{}\right) \right\} \nonumber \\&+\, g_N\left\{ z_N^4S_2^0T_2^0R_2^0T_2^1\frac{}{}\right\} +g_K\left\{ z_K^3\left( 4R_2^0S_2^0T_2^1R_3^1+R_3^0S_2^0R_2^1T_2^1\frac{}{}\right) \right. \nonumber \\&+\, z_K^4\left( (R_2^0)^2S_2^0T_2^1 -(R_3^0)^2S_2^0T_2^1\frac{}{}\right) -z_Nz_K^2S_2^0T_3^0(R_2^1)^2\nonumber \\&\left. +\, z_Nz_K^3\left( S_2^0R_3^0T_3^0R_2^1-R_2^0S_2^0T_3^0R_3^1\frac{}{}\right) \right\} \Bigg ], \end{aligned}$$
(B17)

and the term X appearing in the above expressions of \(\gamma \)’s is given by

$$\begin{aligned} X= & {} g_\pi \left[ -z_\pi ^2R_2^0T_2^0(S_2^1)^2+z_\pi ^3\left( 3R_2^0S_2^0T_2^0S_3^1+2R_2^0T_2^0S_3^0S_2^1\frac{}{}\right) \right. \nonumber \\&\left. +\, z_\pi ^4\left( R_2^0T_2^0(S_2^0)^2-R_2^0T_2^0(S_3^0)^2\frac{}{}\right) \right] \nonumber \\&+\, g_K\Big [-z_K^2S_2^0T_2^0(R_2^1)^2 \nonumber \\&+\, z_K^3\left( 3R_2^0S_2^0T_2^0R_3^1+2R_3^0S_2^0T_2^0R_2^1\frac{}{}\right) \nonumber \\&+\, z_K^4\left( S_2^0T_2^0(R_2^0)^2-S_2^0T_2^0(R_3^0)^2\frac{}{}\right) \Big ] \nonumber \\&+\, g_N \Big [-z_N^2R_2^0S_2^0(T_2^1)^2\nonumber \\&+\, z_N^3\left( 3R_2^0S_2^0T_2^0T_3^1+2R_2^0S_2^0T_3^0T_2^1\frac{}{}\right) \nonumber \\&+\, z_N^4\left( R_2^0S_2^0(T_2^0)^2-R_2^0S_2^0(T_3^0)^2\frac{}{}\right) \Big ]~. \end{aligned}$$
(B18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalikotay, P., Chaudhuri, N., Ghosh, S. et al. Viscous coefficients and thermal conductivity of a \(\pi K N\) gas mixture in the medium. Eur. Phys. J. A 56, 79 (2020). https://doi.org/10.1140/epja/s10050-020-00074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00074-3

Navigation