Skip to main content
Log in

Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and Strong-Field Gravity

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Astrophysical tests of general relativity belong to two categories: 1) “internal”, i.e. consistency tests within the theory (for example, tests that astrophysical black holes are indeed described by the Kerr solution and its perturbations), or 2) “external”, i.e. tests of the many proposed extensions of the theory. I review some ways in which astrophysical black holes can be used as natural laboratories for both “internal” and “external” tests of general relativity. The examples provided here (ringdown tests of the black hole “no-hair” theorem, bosonic superradiant instabilities in rotating black holes and gravitational-wave tests of massive scalar-tensor theories) are shamelessly biased towards recent research by myself and my collaborators. Hopefully this colloquial introduction aimed mainly at astrophysicists will convince skeptics (if there are any) that space-based detectors will be crucial to study fundamental physics through gravitational-wave observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Throughout this paper I will use geometrical units \(G=c=1\).

  2. The astrophysical plausibility of spontaneous scalarization is supported by detailed studies of stellar structure [6, 7], numerical simulations of collapse [810] and stability analyses [11]. While the strength of spontaneous scalarization phenomena is already strongly constrained by observations of binary pulsars [12], semiclassical vacuum instabilities seem to offer a viable mechanism to “seed” nonzero scalar fields in stars [13, 14].

  3. Tensor multi-scalar theories of gravity have also been investigated in depth (see e.g. [29] and references therein), but we will not consider them here.

  4. The strength of these tests will depend on two key elements: (i) the signal-to-noise ratio (SNR) of individual observations [70], that also affects accuracy in binary parameter estimation, and (ii) the number N of observations that can be used to constrain GR. The reason is that, given a theory whose deviations from GR can be parametrized by one or more universal parameters (e.g. coupling constants), the bounds on these parameters will scale roughly with \(\sqrt {N}\). As a matter of fact, the bounds could improve faster than \(\sqrt {N}\) if some events are particularly loud: see e.g. [69, 71] for detailed analyses addressing specific modifications to GR in the Advanced LIGO/eLISA context, respectively.

  5. Superradiant amplification is not possible for fermionic fields: see e.g. [89, 90].

  6. While our numerical results for the axial modes are supported by an analytical formula, in the polar case we have used two different functions to fit the numerical data at second order in the BH spin.

References

  1. C.M. Will, Living Rev. Relativ. 9(3) (2005)

  2. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rept. 513, 1–189 (2012). doi:10.1016/j.physrep.2012.01.001

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Psaltis, Probes and tests of strong-field gravity with observations in the electromagnetic spectrum. Living Rev. Relativ. (2008). http://adsabs.harvard.edu/abs/2008LRR....11....9P

  4. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (1974)

  5. T. Damour, G. Esposito-Farese, Phys. Rev. Lett. 70, 2220 (1993). doi:10.1103/PhysRevLett.70.2220

    Article  ADS  Google Scholar 

  6. T. Damour, G. Esposito-Farese, Phys. Rev. D54, 1474 (1996). doi:10.1103/PhysRevD.54.1474

    MathSciNet  ADS  Google Scholar 

  7. M. Salgado, D. Sudarsky, U. Nucamendi, Phys. Rev. D58, 124003 (1998). doi:10.1103/PhysRevD.58.124003

    ADS  Google Scholar 

  8. M. Shibata, K. Nakao, T. Nakamura, Phys. Rev. D50, 7304 (1994). doi:10.1103/PhysRevD.50.7304

    ADS  Google Scholar 

  9. T. Harada, T. Chiba, K.I. Nakao, T. Nakamura, Phys. Rev. D55, 2024 (1997). doi:10.1103/PhysRevD.55.2024

    ADS  Google Scholar 

  10. J. Novak, Phys. Rev. D57, 4789 (1998). doi:10.1103/PhysRevD.57.4789

    ADS  Google Scholar 

  11. T. Harada, Prog. Theor. Phys. 98, 359 (1997). doi:10.1143/PTP.98.359

    Article  ADS  Google Scholar 

  12. P.C. Freire, N. Wex, G. Esposito-Farese, J.P. Verbiest, M. Bailes et al., Mon. Not. R. Astron. Soc. 423, 3328 (2012)

    Article  ADS  Google Scholar 

  13. W.C. Lima, G.E. Matsas, D.A. Vanzella, Phys. Rev. Lett. 105, 151102 (2010). doi:10.1103/PhysRevLett.105.151102

    Article  ADS  Google Scholar 

  14. P. Pani, V. Cardoso, E. Berti, J. Read, M. Salgado, Phys. Rev. D83, 081501 (2011). doi:10.1103/PhysRevD.83.081501

    ADS  Google Scholar 

  15. K.S. Thorne, J.J. Dykla, Astrophys. J. Lett. 166, L35 (1971). doi:10.1086/180734

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Hawking, Commun. Math. Phys. 25, 167 (1972). doi:10.1007/BF01877518

    Article  MathSciNet  ADS  Google Scholar 

  17. J.D. Bekenstein, Black hole hair: 25 - years after (1996). arXiv:http://arxiv.org/abs/gr-qc/9605059

  18. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010). doi:10.1103/RevModPhys.82.451

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. D. Psaltis, D. Perrodin, K.R. Dienes, I. Mocioiu, Phys. Rev. Lett. 100, 091101 (2008). doi:10.1103/PhysRevLett.100.091101

    Article  MathSciNet  ADS  Google Scholar 

  20. M.W. Horbatsch, C.P. Burgess, Cosmic black-hole hair growth and quasar OJ287. JCAP. 1205, 010 (2012). doi:10.1088/1475-7516/2012/05/010

    Article  ADS  Google Scholar 

  21. V. Faraoni, V. Vitagliano, T.P. Sotiriou, S. Liberati, Phys. Rev. D86, 064040 (2012). doi:10.1103/PhysRevD.86.064040

    ADS  Google Scholar 

  22. E. Barausse, T.P. Sotiriou, Phys. Rev. Lett. 101, 099001 (2008). doi:10.1103/PhysRevLett.101.099001

    Article  ADS  Google Scholar 

  23. J.R. Gair, M. Vallisneri, S.L. Larson, J.G. Baker, Testing general relativity with low-frequency, space-based gravitational-wave detectors (2012). arXiv:http://arxiv.org/abs/1212.5575

  24. P.G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968)

    Article  Google Scholar 

  25. R.V. Wagoner, Phys. Rev. D1, 3209 (1970). doi:10.1103/PhysRevD.1.3209

    ADS  Google Scholar 

  26. C. Brans, R. Dicke, Phys. Rev. 124, 925 (1961). doi:10.1103/PhysRev.124.925

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J. Alsing, E. Berti, C.M. Will, H. Zaglauer, Phys. Rev. D85, 064041 (2012). doi:10.1103/PhysRevD.85.064041

    ADS  Google Scholar 

  28. Y. Fujii, K. Maeda. The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  29. T. Damour, G. Esposito-Farese, Class. Quantum Gravity 9, 2093 (1992). doi:10.1088/0264-9381/9/9/015

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. G. Esposito-Farese, AIP Conf. Proc. 736, 35 (2004). doi:10.1063/1.1835173

    Article  ADS  Google Scholar 

  31. M. Salgado, D.M.D. Rio, M. Alcubierre, D. Nunez, Phys. Rev. D77, 104010 (2008). doi:10.1103/PhysRevD.77.104010

    ADS  Google Scholar 

  32. J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna et al., Late inspiral and merger of binary black holes in scalar-tensor theories of gravity (2011). arXiv:http://arxiv.org/abs/1112.3928

  33. E. Barausse, C. Palenzuela, M. Ponce, L. Lehner, Neutronstar mergers in scalar-tensor theories of gravity (2012). arXiv:http://arxiv.org/abs/1212.5053

  34. S. Alexander, N. Yunes, Phys. Rep. 480, 1 (2009). doi:10.1016/j.physrep.2009.07.002

    Article  MathSciNet  ADS  Google Scholar 

  35. P. Pani, E. Berti, V. Cardoso, J. Read, Phys. Rev. D84, 104035 (2011). doi:10.1103/PhysRevD.84.104035

    ADS  Google Scholar 

  36. L. Amendola, C. Charmousis, S.C. Davis, JCAP . 0710, 004 (2007). doi:10.1088/1475-7516/2007/10/004

    Article  ADS  Google Scholar 

  37. L. Amendola, C. Charmousis, S.C. Davis, Phys. Rev. D78, 084009 (2008). doi:10.1103/PhysRevD.78.084009

    ADS  Google Scholar 

  38. N. Yunes, F. Pretorius, Phys. Rev. D79, 084043 (2009). doi:10.1103/PhysRevD.79.084043

    ADS  Google Scholar 

  39. P. Pani, C.F. Macedo, L.C. Crispino, V. Cardoso, Phys. Rev. D84, 087501 (2011). doi:10.1103/PhysRevD.84.087501

    ADS  Google Scholar 

  40. K. Yagi, N. Yunes, T. Tanaka, Phys. Rev. D86, 044037 (2012). doi:10.1103/PhysRevD.86.044037

    ADS  Google Scholar 

  41. H. Motohashi, T. Suyama, Phys. Rev. D84, 084041 (2011). doi:10.1103/PhysRevD.84.084041

    ADS  Google Scholar 

  42. H. Motohashi, T. Suyama, Phys. Rev. D85, 044054 (2012). doi:10.1103/PhysRevD.85.044054

    ADS  Google Scholar 

  43. N. Yunes, D. Psaltis, F. Ozel, A. Loeb, Phys. Rev. D81, 064020 (2010). doi:10.1103/PhysRevD.81.064020

    ADS  Google Scholar 

  44. Y. Ali-Haimoud, Y. Chen, Phys. Rev. D84, 124033 (2011). doi:10.1103/PhysRevD.84.124033

    ADS  Google Scholar 

  45. K. Yagi, L.C. Stein, N. Yunes, T. Tanaka, Phys. Rev. D85, 064022 (2012). doi:10.1103/PhysRevD.85.064022

    ADS  Google Scholar 

  46. K. Yagi, N. Yunes, T. Tanaka, Gravitational waves from quasicircular black hole binaries in dynamical chern-simons gravity. Phys. Rev. Lett. 109, 251105 (2012). doi:10.1103/PhysRevLett.109.251105

    Article  ADS  Google Scholar 

  47. K. Yagi, L.C. Stein, N. Yunes, T. Tanaka, Isolated and binary neutron stars in dynamical chern-simons gravity (2013). arXiv:http://arxiv.org/abs/1302.1918

  48. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  49. L.G. Jaime, L. Patino, M. Salgado, Phys. Rev. D83, 024039 (2011). doi:10.1103/PhysRevD.83.024039

    ADS  Google Scholar 

  50. T. Jacobson, PoS QG-PH, 020 (2007)

  51. P. Horava, Phys. Rev. D79, 084008 (2009). doi:10.1103/PhysRevD.79.084008

    MathSciNet  ADS  Google Scholar 

  52. J.D. Bekenstein, Phys. Rev. D70, 083509 (2004). doi:10.1103/PhysRevD.71.069901

    ADS  Google Scholar 

  53. C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106, 231101 (2011). doi:10.1103/PhysRevLett.106.231101

    Article  ADS  Google Scholar 

  54. M. Banados, P.G. Ferreira, Phys. Rev. Lett. 105, 011101 (2010). doi:10.1103/PhysRevLett.105.011101

    Article  MathSciNet  ADS  Google Scholar 

  55. A. Buonanno, G.B. Cook, F. Pretorius, Phys. Rev. D75, 124018 (2007). doi:10.1103/PhysRevD.75.124018

    MathSciNet  ADS  Google Scholar 

  56. E. Berti, V. Cardoso, J.A. González, U. Sperhake, M. Hannam, S. Husa, B. Brügmann, Phys. Rev. D76, 064034 (2007). doi:10.1103/PhysRevD.76.064034

    ADS  Google Scholar 

  57. S. Chandrasekhar. The Mathematical Theory of Black Holes (Clarendon Press, Oxford, 1983)

    MATH  Google Scholar 

  58. E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26, 163001 (2009). doi:10.1088/0264-9381/26/16/163001

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Arvanitaki, S. Dubovsky, Phys. Rev. D83, 044026 (2011). doi:10.1103/PhysRevD.83.044026

    ADS  Google Scholar 

  60. E. Berti, V. Cardoso, C.M. Will, Phys. Rev. D73, 064030 (2006). doi:10.1103/PhysRevD.73.064030

    MathSciNet  ADS  Google Scholar 

  61. M.C. Miller, E.J.M. Colbert, Int. J. Mod. Phys. D13, 1 (2004). doi:10.1142/S0218271804004426

    Article  ADS  Google Scholar 

  62. K. Danzmann et al., LISA: laser interferometer space antenna for the detection and observation of gravitational waves. Pre-phase A report, 2nd ed. (1998)

  63. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti et al., eLISA: astrophysics and cosmology in the millihertz regime (2012). arXiv:http://arxiv.org/abs/1201.3621

  64. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti et al., Class. Quantum Gravity 29, 124016 (2012). doi:10.1088/0264-9381/29/12/124016

    Article  ADS  Google Scholar 

  65. E. Berti, M. Volonteri, Astrophys. J. 684, 822 (2008). doi:10.1086/590379

    Article  ADS  Google Scholar 

  66. J.R. Gair, A. Sesana, E. Berti, M. Volonteri, Class. Quantum Gravity 28, 094018 (2011). doi:10.1088/0264-9381/28/9/094018

    Article  ADS  Google Scholar 

  67. A. Sesana, J. Gair, E. Berti, M. Volonteri, Phys. Rev. D83, 044036 (2011). doi:10.1103/PhysRevD.83.044036

    ADS  Google Scholar 

  68. K.G. Arun, S. Babak, E. Berti, N. Cornish, C. Cutler, J.R. Gair, S.A. Hughes, B.R. Iyer, R.N. Lang, I. Mandel, E.K. Porter, B.S. Sathyaprakash, S. Sinha, A.M. Sintes, M. Trias, C. Van Den Broeck, M. Volonteri, Class. Quantum Gravity 26, 094027 (2009). doi:10.1088/0264-9381/26/9/094027

    Article  ADS  Google Scholar 

  69. E. Berti, J. Gair, A. Sesana, Phys. Rev. D84, 101501 (2011). doi:10.1103/PhysRevD.84.101501

    ADS  Google Scholar 

  70. M. Vallisneri, Phys. Rev. D86, 082001 (2012). doi:10.1103/PhysRevD.86.082001

    ADS  Google Scholar 

  71. W. Del Pozzo, J. Veitch, A. Vecchio, Phys. Rev. D83, 082002 (2011). doi:10.1103/PhysRevD.83.082002

    ADS  Google Scholar 

  72. S.L. Detweiler, Phys. Rev. D22, 2323 (1980). doi:10.1103/PhysRevD.22.2323

    ADS  Google Scholar 

  73. W.H. Press, S.A. Teukolsky, Nature 238, 211 (1972). doi:10.1038/238211a0

    Article  ADS  Google Scholar 

  74. V. Cardoso, O.J.C. Dias, J.P.S. Lemos, S. Yoshida, Phys. Rev. D70, 044039 (2004). doi:10.1103/PhysRevD.70.044039

    MathSciNet  ADS  Google Scholar 

  75. H. Witek, V. Cardoso, A. Ishibashi, U. Sperhake, Superradiant instabilities in astrophysical systems. Phys. Rev. D87, 043513 (2013). doi:10.1103/PhysRevD.87.043513

    ADS  Google Scholar 

  76. S.R. Dolan, Superradiant instabilities of rotating black holes in the time domain (2012). arXiv:http://arxiv.org/abs/1212.1477

  77. T. Damour, N. Deruelle, R. Ruffini, Lett. Nuovo Cim. 15, 257 (1976)

    Article  ADS  Google Scholar 

  78. T. Zouros, D. Eardley, Ann. Phys. 118, 139 (1979). doi:10.1016/0003-4916(79)90237-9

    Article  ADS  Google Scholar 

  79. S.R. Dolan, Phys. Rev. D76, 084001 (2007). doi:10.1103/PhysRevD.76.084001

    MathSciNet  ADS  Google Scholar 

  80. J. Rosa, JHEP 1006, 015 (2010). doi:10.1007/JHEP06(2010)015

    Article  MathSciNet  ADS  Google Scholar 

  81. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, J. March-Russell, Phys. Rev. D81, 123530 (2010). doi:10.1103/PhysRevD.81.123530

    ADS  Google Scholar 

  82. V. Cardoso, S. Chakrabarti, P. Pani, E. Berti, L. Gualtieri, Phys. Rev. Lett. 107, 241101 (2011). doi:10.1103/PhysRevLett.107.241101

    Article  ADS  Google Scholar 

  83. N. Yunes, P. Pani, V. Cardoso, Phys. Rev. D85, 102003 (2012). doi:10.1103/PhysRevD.85.102003

    ADS  Google Scholar 

  84. H. Kodama, H. Yoshino, Axiverse and black hole. Int. J. Mod. Phys. Conf. Ser. 7, 84–115 (2012). doi:10.1142/S2010194512004199

    Article  Google Scholar 

  85. H. Yoshino, H. Kodama, Prog. Theor. Phys. 128, 153 (2012). doi:10.1143/PTP.128.153

    Article  ADS  MATH  Google Scholar 

  86. G. Mocanu, D. Grumiller, Phys. Rev. D85, 105022 (2012). doi:10.1103/PhysRevD.85.105022

    ADS  Google Scholar 

  87. L. Brenneman, C. Reynolds, M. Nowak, R. Reis, M. Trippe et al., Astrophys. J. 736, 103 (2011). doi:10.1088/0004-637X/736/2/103

    Article  ADS  Google Scholar 

  88. S. Schmoll, J. Miller, M. Volonteri, E. Cackett, C. Reynolds et al., Astrophys. J. 703, 2171 (2009). doi:10.1088/0004-637X/703/2/2171

    Article  ADS  Google Scholar 

  89. W. Unruh, Phys. Rev. Lett. 31, 1265 (1973). doi:10.1103/PhysRevLett.31.1265. URL:http://link.aps.org/doi/10.1103/PhysRevLett.31.1265

    Article  ADS  Google Scholar 

  90. B.R. Iyer, A. Kumar, Phys. Rev. D18, 4799 (1978). doi:0.1103/PhysRevD.18.4799

    ADS  Google Scholar 

  91. P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, Phys. Rev. Lett. 109, 131102 (2012). doi:10.1103/PhysRevLett.109.131102

    Article  ADS  Google Scholar 

  92. P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi A., Phys. Rev. D86, 104017 (2012). doi:10.1103/PhysRevD.86.104017

    ADS  Google Scholar 

  93. A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 82, 939 (2010). doi:10.1103/RevModPhys.82.939

    Article  ADS  Google Scholar 

  94. M. Goodsell, J. Jaeckel, J. Redondo, A. Ringwald, JHEP 0911, 027 (2009). doi:10.1088/1126-6708/2009/11/027

    Article  ADS  Google Scholar 

  95. J. Jaeckel, A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010). doi:10.1146/annurev.nucl.012809.104433

    Article  ADS  Google Scholar 

  96. P.G. Camara, L.E. Ibanez, F. Marchesano, JHEP 1109, 110 (2011). doi:10.1007/JHEP09(2011)110

    Article  MathSciNet  ADS  Google Scholar 

  97. J. Beringer, Phys. Rev. D86, 010001 (2012). doi:10.1103/PhysRevD.86.010001

  98. L. Perivolaropoulos, Phys. Rev. D81, 047501 (2010). doi:10.1103/PhysRevD.81.047501

    ADS  Google Scholar 

  99. G.M. Harry, The LIGO scientific collaboration, Class. Quantum Gravity 27, 084006 (2010). doi:10.1088/0264-9381/27/8/084006

  100. Indigo webpage , (2012). http://www.gw-indigo.org/

  101. K. Somiya, Class. Quant. Gravity 29, 124007 (2012). doi:10.1088/0264-9381/29/12/124007

    Article  ADS  Google Scholar 

  102. M. Punturo, Class. Quantum Gravity 27, 194002 (2010). doi:10.1088/0264-9381/27/19/194002

    Article  ADS  Google Scholar 

  103. J. Abadie, Class. Quantum Gravity 27, 173001 (2010). doi:10.1088/0264-9381/27/17/173001

    Article  ADS  Google Scholar 

  104. M. Dominik, K. Belczynski, C. Fryer, D. Holz, E. Berti et al., Astrophys. J. 759, 52 (2012). doi:10.1088/0004-637X/759/1/52

    Article  ADS  Google Scholar 

  105. P. Amaro-Seoane, L. Santamaria, Astrophys. J. 722, 1197 (2010). doi:10.1088/0004-637X/722/2/1197

    Article  ADS  Google Scholar 

  106. B. Sathyaprakash, M. Abernathy, F. Acernese, P. Ajith, B. Allen et al., Class. Quantum Gravity 29, 124013 (2012). doi:10.1088/0264-9381/29/12/124013

    Article  ADS  Google Scholar 

  107. J.R. Gair, I. Mandel, M. Miller, M. Volonteri, Gen. Relativ. Gravit. 43, 485 (2011). doi:10.1007/s10714-010-1104-3

    Article  ADS  Google Scholar 

  108. E. Berti, A. Buonanno, C.M. Will, Phys. Rev. D71, 084025 (2005). doi:10.1103/PhysRevD.71.084025

    ADS  Google Scholar 

  109. C.M. Will, Phys. Rev. D50, 6058 (1994). doi:10.1103/PhysRevD.50.6058

    ADS  Google Scholar 

  110. E. Berti, L. Gualtieri, M. Horbatsch, J. Alsing, Phys. Rev. D85, 122005 (2012). doi:10.1103/PhysRevD.85.122005

    ADS  Google Scholar 

  111. C.W. Misner, Phys. Rev. Lett. 28, 994 (1972). doi:10.1103/PhysRevLett.28.994

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research reviewed in this paper was supported by NSF CAREER Grant No. PHY-1055103. I thank my collaborators on various aspects of the work described in this paper: Justin Alsing, Vitor Cardoso, Sayan Chakrabarti, Jonathan Gair, Leonardo Gualtieri, Michael Horbatsch, Akihiro Ishibashi, Paolo Pani, Alberto Sesana, Ulrich Sperhake, Marta Volonteri, Clifford Will and Helmut Zaglauer. Special thanks go to Paolo Pani for comments on an early draft and to Alberto Sesana for preparing Fig. 1, as well as excellent mojitos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Berti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berti, E. Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and Strong-Field Gravity. Braz J Phys 43, 341–350 (2013). https://doi.org/10.1007/s13538-013-0128-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0128-z

Keywords

Navigation