Brazilian Journal of Physics

, Volume 43, Issue 5–6, pp 341–350 | Cite as

Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and Strong-Field Gravity

Particles and Fields

Abstract

Astrophysical tests of general relativity belong to two categories: 1) “internal”, i.e. consistency tests within the theory (for example, tests that astrophysical black holes are indeed described by the Kerr solution and its perturbations), or 2) “external”, i.e. tests of the many proposed extensions of the theory. I review some ways in which astrophysical black holes can be used as natural laboratories for both “internal” and “external” tests of general relativity. The examples provided here (ringdown tests of the black hole “no-hair” theorem, bosonic superradiant instabilities in rotating black holes and gravitational-wave tests of massive scalar-tensor theories) are shamelessly biased towards recent research by myself and my collaborators. Hopefully this colloquial introduction aimed mainly at astrophysicists will convince skeptics (if there are any) that space-based detectors will be crucial to study fundamental physics through gravitational-wave observations.

Keywords

General relativity Black holes Gravitational radiation 

References

  1. 1.
    C.M. Will, Living Rev. Relativ. 9(3) (2005)Google Scholar
  2. 2.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rept. 513, 1–189 (2012). doi:10.1016/j.physrep.2012.01.001 MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. Psaltis, Probes and tests of strong-field gravity with observations in the electromagnetic spectrum. Living Rev. Relativ. (2008). http://adsabs.harvard.edu/abs/2008LRR....11....9P
  4. 4.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (1974)Google Scholar
  5. 5.
    T. Damour, G. Esposito-Farese, Phys. Rev. Lett. 70, 2220 (1993). doi:10.1103/PhysRevLett.70.2220 ADSCrossRefGoogle Scholar
  6. 6.
    T. Damour, G. Esposito-Farese, Phys. Rev. D54, 1474 (1996). doi:10.1103/PhysRevD.54.1474 MathSciNetADSGoogle Scholar
  7. 7.
    M. Salgado, D. Sudarsky, U. Nucamendi, Phys. Rev. D58, 124003 (1998). doi:10.1103/PhysRevD.58.124003 ADSGoogle Scholar
  8. 8.
    M. Shibata, K. Nakao, T. Nakamura, Phys. Rev. D50, 7304 (1994). doi:10.1103/PhysRevD.50.7304 ADSGoogle Scholar
  9. 9.
    T. Harada, T. Chiba, K.I. Nakao, T. Nakamura, Phys. Rev. D55, 2024 (1997). doi:10.1103/PhysRevD.55.2024 ADSGoogle Scholar
  10. 10.
    J. Novak, Phys. Rev. D57, 4789 (1998). doi:10.1103/PhysRevD.57.4789 ADSGoogle Scholar
  11. 11.
    T. Harada, Prog. Theor. Phys. 98, 359 (1997). doi:10.1143/PTP.98.359 ADSCrossRefGoogle Scholar
  12. 12.
    P.C. Freire, N. Wex, G. Esposito-Farese, J.P. Verbiest, M. Bailes et al., Mon. Not. R. Astron. Soc. 423, 3328 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    W.C. Lima, G.E. Matsas, D.A. Vanzella, Phys. Rev. Lett. 105, 151102 (2010). doi:10.1103/PhysRevLett.105.151102 ADSCrossRefGoogle Scholar
  14. 14.
    P. Pani, V. Cardoso, E. Berti, J. Read, M. Salgado, Phys. Rev. D83, 081501 (2011). doi:10.1103/PhysRevD.83.081501 ADSGoogle Scholar
  15. 15.
    K.S. Thorne, J.J. Dykla, Astrophys. J. Lett. 166, L35 (1971). doi:10.1086/180734 MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    S. Hawking, Commun. Math. Phys. 25, 167 (1972). doi:10.1007/BF01877518 MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    J.D. Bekenstein, Black hole hair: 25 - years after (1996). arXiv:http://arxiv.org/abs/gr-qc/9605059
  18. 18.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010). doi:10.1103/RevModPhys.82.451 MathSciNetADSCrossRefMATHGoogle Scholar
  19. 19.
    D. Psaltis, D. Perrodin, K.R. Dienes, I. Mocioiu, Phys. Rev. Lett. 100, 091101 (2008). doi:10.1103/PhysRevLett.100.091101 MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    M.W. Horbatsch, C.P. Burgess, Cosmic black-hole hair growth and quasar OJ287. JCAP. 1205, 010 (2012). doi:10.1088/1475-7516/2012/05/010 ADSCrossRefGoogle Scholar
  21. 21.
    V. Faraoni, V. Vitagliano, T.P. Sotiriou, S. Liberati, Phys. Rev. D86, 064040 (2012). doi:10.1103/PhysRevD.86.064040 ADSGoogle Scholar
  22. 22.
    E. Barausse, T.P. Sotiriou, Phys. Rev. Lett. 101, 099001 (2008). doi:10.1103/PhysRevLett.101.099001 ADSCrossRefGoogle Scholar
  23. 23.
    J.R. Gair, M. Vallisneri, S.L. Larson, J.G. Baker, Testing general relativity with low-frequency, space-based gravitational-wave detectors (2012). arXiv:http://arxiv.org/abs/1212.5575
  24. 24.
    P.G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968)CrossRefGoogle Scholar
  25. 25.
    R.V. Wagoner, Phys. Rev. D1, 3209 (1970). doi:10.1103/PhysRevD.1.3209 ADSGoogle Scholar
  26. 26.
    C. Brans, R. Dicke, Phys. Rev. 124, 925 (1961). doi:10.1103/PhysRev.124.925 MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    J. Alsing, E. Berti, C.M. Will, H. Zaglauer, Phys. Rev. D85, 064041 (2012). doi:10.1103/PhysRevD.85.064041 ADSGoogle Scholar
  28. 28.
    Y. Fujii, K. Maeda. The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003)MATHGoogle Scholar
  29. 29.
    T. Damour, G. Esposito-Farese, Class. Quantum Gravity 9, 2093 (1992). doi:10.1088/0264-9381/9/9/015 MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    G. Esposito-Farese, AIP Conf. Proc. 736, 35 (2004). doi:10.1063/1.1835173 ADSCrossRefGoogle Scholar
  31. 31.
    M. Salgado, D.M.D. Rio, M. Alcubierre, D. Nunez, Phys. Rev. D77, 104010 (2008). doi:10.1103/PhysRevD.77.104010 ADSGoogle Scholar
  32. 32.
    J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna et al., Late inspiral and merger of binary black holes in scalar-tensor theories of gravity (2011). arXiv:http://arxiv.org/abs/1112.3928
  33. 33.
    E. Barausse, C. Palenzuela, M. Ponce, L. Lehner, Neutronstar mergers in scalar-tensor theories of gravity (2012). arXiv:http://arxiv.org/abs/1212.5053
  34. 34.
    S. Alexander, N. Yunes, Phys. Rep. 480, 1 (2009). doi:10.1016/j.physrep.2009.07.002 MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    P. Pani, E. Berti, V. Cardoso, J. Read, Phys. Rev. D84, 104035 (2011). doi:10.1103/PhysRevD.84.104035 ADSGoogle Scholar
  36. 36.
    L. Amendola, C. Charmousis, S.C. Davis, JCAP . 0710, 004 (2007). doi:10.1088/1475-7516/2007/10/004 ADSCrossRefGoogle Scholar
  37. 37.
    L. Amendola, C. Charmousis, S.C. Davis, Phys. Rev. D78, 084009 (2008). doi:10.1103/PhysRevD.78.084009 ADSGoogle Scholar
  38. 38.
    N. Yunes, F. Pretorius, Phys. Rev. D79, 084043 (2009). doi:10.1103/PhysRevD.79.084043 ADSGoogle Scholar
  39. 39.
    P. Pani, C.F. Macedo, L.C. Crispino, V. Cardoso, Phys. Rev. D84, 087501 (2011). doi:10.1103/PhysRevD.84.087501 ADSGoogle Scholar
  40. 40.
    K. Yagi, N. Yunes, T. Tanaka, Phys. Rev. D86, 044037 (2012). doi:10.1103/PhysRevD.86.044037 ADSGoogle Scholar
  41. 41.
    H. Motohashi, T. Suyama, Phys. Rev. D84, 084041 (2011). doi:10.1103/PhysRevD.84.084041 ADSGoogle Scholar
  42. 42.
    H. Motohashi, T. Suyama, Phys. Rev. D85, 044054 (2012). doi:10.1103/PhysRevD.85.044054 ADSGoogle Scholar
  43. 43.
    N. Yunes, D. Psaltis, F. Ozel, A. Loeb, Phys. Rev. D81, 064020 (2010). doi:10.1103/PhysRevD.81.064020 ADSGoogle Scholar
  44. 44.
    Y. Ali-Haimoud, Y. Chen, Phys. Rev. D84, 124033 (2011). doi:10.1103/PhysRevD.84.124033 ADSGoogle Scholar
  45. 45.
    K. Yagi, L.C. Stein, N. Yunes, T. Tanaka, Phys. Rev. D85, 064022 (2012). doi:10.1103/PhysRevD.85.064022 ADSGoogle Scholar
  46. 46.
    K. Yagi, N. Yunes, T. Tanaka, Gravitational waves from quasicircular black hole binaries in dynamical chern-simons gravity. Phys. Rev. Lett. 109, 251105 (2012). doi:10.1103/PhysRevLett.109.251105 ADSCrossRefGoogle Scholar
  47. 47.
    K. Yagi, L.C. Stein, N. Yunes, T. Tanaka, Isolated and binary neutron stars in dynamical chern-simons gravity (2013). arXiv:http://arxiv.org/abs/1302.1918
  48. 48.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)ADSGoogle Scholar
  49. 49.
    L.G. Jaime, L. Patino, M. Salgado, Phys. Rev. D83, 024039 (2011). doi:10.1103/PhysRevD.83.024039 ADSGoogle Scholar
  50. 50.
    T. Jacobson, PoS QG-PH, 020 (2007)Google Scholar
  51. 51.
    P. Horava, Phys. Rev. D79, 084008 (2009). doi:10.1103/PhysRevD.79.084008 MathSciNetADSGoogle Scholar
  52. 52.
    J.D. Bekenstein, Phys. Rev. D70, 083509 (2004). doi:10.1103/PhysRevD.71.069901 ADSGoogle Scholar
  53. 53.
    C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106, 231101 (2011). doi:10.1103/PhysRevLett.106.231101 ADSCrossRefGoogle Scholar
  54. 54.
    M. Banados, P.G. Ferreira, Phys. Rev. Lett. 105, 011101 (2010). doi:10.1103/PhysRevLett.105.011101 MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    A. Buonanno, G.B. Cook, F. Pretorius, Phys. Rev. D75, 124018 (2007). doi:10.1103/PhysRevD.75.124018 MathSciNetADSGoogle Scholar
  56. 56.
    E. Berti, V. Cardoso, J.A. González, U. Sperhake, M. Hannam, S. Husa, B. Brügmann, Phys. Rev. D76, 064034 (2007). doi:10.1103/PhysRevD.76.064034 ADSGoogle Scholar
  57. 57.
    S. Chandrasekhar. The Mathematical Theory of Black Holes (Clarendon Press, Oxford, 1983)MATHGoogle Scholar
  58. 58.
    E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26, 163001 (2009). doi:10.1088/0264-9381/26/16/163001 MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    A. Arvanitaki, S. Dubovsky, Phys. Rev. D83, 044026 (2011). doi:10.1103/PhysRevD.83.044026 ADSGoogle Scholar
  60. 60.
    E. Berti, V. Cardoso, C.M. Will, Phys. Rev. D73, 064030 (2006). doi:10.1103/PhysRevD.73.064030 MathSciNetADSGoogle Scholar
  61. 61.
    M.C. Miller, E.J.M. Colbert, Int. J. Mod. Phys. D13, 1 (2004). doi:10.1142/S0218271804004426 ADSCrossRefGoogle Scholar
  62. 62.
    K. Danzmann et al., LISA: laser interferometer space antenna for the detection and observation of gravitational waves. Pre-phase A report, 2nd ed. (1998)Google Scholar
  63. 63.
    P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti et al., eLISA: astrophysics and cosmology in the millihertz regime (2012). arXiv:http://arxiv.org/abs/1201.3621
  64. 64.
    P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti et al., Class. Quantum Gravity 29, 124016 (2012). doi:10.1088/0264-9381/29/12/124016 ADSCrossRefGoogle Scholar
  65. 65.
    E. Berti, M. Volonteri, Astrophys. J. 684, 822 (2008). doi:10.1086/590379 ADSCrossRefGoogle Scholar
  66. 66.
    J.R. Gair, A. Sesana, E. Berti, M. Volonteri, Class. Quantum Gravity 28, 094018 (2011). doi:10.1088/0264-9381/28/9/094018 ADSCrossRefGoogle Scholar
  67. 67.
    A. Sesana, J. Gair, E. Berti, M. Volonteri, Phys. Rev. D83, 044036 (2011). doi:10.1103/PhysRevD.83.044036 ADSGoogle Scholar
  68. 68.
    K.G. Arun, S. Babak, E. Berti, N. Cornish, C. Cutler, J.R. Gair, S.A. Hughes, B.R. Iyer, R.N. Lang, I. Mandel, E.K. Porter, B.S. Sathyaprakash, S. Sinha, A.M. Sintes, M. Trias, C. Van Den Broeck, M. Volonteri, Class. Quantum Gravity 26, 094027 (2009). doi:10.1088/0264-9381/26/9/094027 ADSCrossRefGoogle Scholar
  69. 69.
    E. Berti, J. Gair, A. Sesana, Phys. Rev. D84, 101501 (2011). doi:10.1103/PhysRevD.84.101501 ADSGoogle Scholar
  70. 70.
    M. Vallisneri, Phys. Rev. D86, 082001 (2012). doi:10.1103/PhysRevD.86.082001 ADSGoogle Scholar
  71. 71.
    W. Del Pozzo, J. Veitch, A. Vecchio, Phys. Rev. D83, 082002 (2011). doi:10.1103/PhysRevD.83.082002 ADSGoogle Scholar
  72. 72.
    S.L. Detweiler, Phys. Rev. D22, 2323 (1980). doi:10.1103/PhysRevD.22.2323 ADSGoogle Scholar
  73. 73.
    W.H. Press, S.A. Teukolsky, Nature 238, 211 (1972). doi:10.1038/238211a0 ADSCrossRefGoogle Scholar
  74. 74.
    V. Cardoso, O.J.C. Dias, J.P.S. Lemos, S. Yoshida, Phys. Rev. D70, 044039 (2004). doi:10.1103/PhysRevD.70.044039 MathSciNetADSGoogle Scholar
  75. 75.
    H. Witek, V. Cardoso, A. Ishibashi, U. Sperhake, Superradiant instabilities in astrophysical systems. Phys. Rev. D87, 043513 (2013). doi:10.1103/PhysRevD.87.043513 ADSGoogle Scholar
  76. 76.
    S.R. Dolan, Superradiant instabilities of rotating black holes in the time domain (2012). arXiv:http://arxiv.org/abs/1212.1477
  77. 77.
    T. Damour, N. Deruelle, R. Ruffini, Lett. Nuovo Cim. 15, 257 (1976)ADSCrossRefGoogle Scholar
  78. 78.
    T. Zouros, D. Eardley, Ann. Phys. 118, 139 (1979). doi:10.1016/0003-4916(79)90237-9 ADSCrossRefGoogle Scholar
  79. 79.
    S.R. Dolan, Phys. Rev. D76, 084001 (2007). doi:10.1103/PhysRevD.76.084001 MathSciNetADSGoogle Scholar
  80. 80.
  81. 81.
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, J. March-Russell, Phys. Rev. D81, 123530 (2010). doi:10.1103/PhysRevD.81.123530 ADSGoogle Scholar
  82. 82.
    V. Cardoso, S. Chakrabarti, P. Pani, E. Berti, L. Gualtieri, Phys. Rev. Lett. 107, 241101 (2011). doi:10.1103/PhysRevLett.107.241101 ADSCrossRefGoogle Scholar
  83. 83.
    N. Yunes, P. Pani, V. Cardoso, Phys. Rev. D85, 102003 (2012). doi:10.1103/PhysRevD.85.102003 ADSGoogle Scholar
  84. 84.
    H. Kodama, H. Yoshino, Axiverse and black hole. Int. J. Mod. Phys. Conf. Ser. 7, 84–115 (2012). doi:10.1142/S2010194512004199 CrossRefGoogle Scholar
  85. 85.
    H. Yoshino, H. Kodama, Prog. Theor. Phys. 128, 153 (2012). doi:10.1143/PTP.128.153 ADSCrossRefMATHGoogle Scholar
  86. 86.
    G. Mocanu, D. Grumiller, Phys. Rev. D85, 105022 (2012). doi:10.1103/PhysRevD.85.105022 ADSGoogle Scholar
  87. 87.
    L. Brenneman, C. Reynolds, M. Nowak, R. Reis, M. Trippe et al., Astrophys. J. 736, 103 (2011). doi:10.1088/0004-637X/736/2/103 ADSCrossRefGoogle Scholar
  88. 88.
    S. Schmoll, J. Miller, M. Volonteri, E. Cackett, C. Reynolds et al., Astrophys. J. 703, 2171 (2009). doi:10.1088/0004-637X/703/2/2171 ADSCrossRefGoogle Scholar
  89. 89.
  90. 90.
    B.R. Iyer, A. Kumar, Phys. Rev. D18, 4799 (1978). doi:0.1103/PhysRevD.18.4799 ADSGoogle Scholar
  91. 91.
    P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, Phys. Rev. Lett. 109, 131102 (2012). doi:10.1103/PhysRevLett.109.131102 ADSCrossRefGoogle Scholar
  92. 92.
    P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi A., Phys. Rev. D86, 104017 (2012). doi:10.1103/PhysRevD.86.104017 ADSGoogle Scholar
  93. 93.
    A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 82, 939 (2010). doi:10.1103/RevModPhys.82.939 ADSCrossRefGoogle Scholar
  94. 94.
    M. Goodsell, J. Jaeckel, J. Redondo, A. Ringwald, JHEP 0911, 027 (2009). doi:10.1088/1126-6708/2009/11/027 ADSCrossRefGoogle Scholar
  95. 95.
    J. Jaeckel, A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010). doi:10.1146/annurev.nucl.012809.104433 ADSCrossRefGoogle Scholar
  96. 96.
    P.G. Camara, L.E. Ibanez, F. Marchesano, JHEP 1109, 110 (2011). doi:10.1007/JHEP09(2011)110 MathSciNetADSCrossRefGoogle Scholar
  97. 97.
    J. Beringer, Phys. Rev. D86, 010001 (2012). doi:10.1103/PhysRevD.86.010001
  98. 98.
    L. Perivolaropoulos, Phys. Rev. D81, 047501 (2010). doi:10.1103/PhysRevD.81.047501 ADSGoogle Scholar
  99. 99.
    G.M. Harry, The LIGO scientific collaboration, Class. Quantum Gravity 27, 084006 (2010). doi:10.1088/0264-9381/27/8/084006
  100. 100.
    Indigo webpage , (2012). http://www.gw-indigo.org/
  101. 101.
    K. Somiya, Class. Quant. Gravity 29, 124007 (2012). doi:10.1088/0264-9381/29/12/124007 ADSCrossRefGoogle Scholar
  102. 102.
    M. Punturo, Class. Quantum Gravity 27, 194002 (2010). doi:10.1088/0264-9381/27/19/194002 ADSCrossRefGoogle Scholar
  103. 103.
    J. Abadie, Class. Quantum Gravity 27, 173001 (2010). doi:10.1088/0264-9381/27/17/173001 ADSCrossRefGoogle Scholar
  104. 104.
    M. Dominik, K. Belczynski, C. Fryer, D. Holz, E. Berti et al., Astrophys. J. 759, 52 (2012). doi:10.1088/0004-637X/759/1/52 ADSCrossRefGoogle Scholar
  105. 105.
    P. Amaro-Seoane, L. Santamaria, Astrophys. J. 722, 1197 (2010). doi:10.1088/0004-637X/722/2/1197 ADSCrossRefGoogle Scholar
  106. 106.
    B. Sathyaprakash, M. Abernathy, F. Acernese, P. Ajith, B. Allen et al., Class. Quantum Gravity 29, 124013 (2012). doi:10.1088/0264-9381/29/12/124013 ADSCrossRefGoogle Scholar
  107. 107.
    J.R. Gair, I. Mandel, M. Miller, M. Volonteri, Gen. Relativ. Gravit. 43, 485 (2011). doi:10.1007/s10714-010-1104-3 ADSCrossRefGoogle Scholar
  108. 108.
    E. Berti, A. Buonanno, C.M. Will, Phys. Rev. D71, 084025 (2005). doi:10.1103/PhysRevD.71.084025 ADSGoogle Scholar
  109. 109.
    C.M. Will, Phys. Rev. D50, 6058 (1994). doi:10.1103/PhysRevD.50.6058 ADSGoogle Scholar
  110. 110.
    E. Berti, L. Gualtieri, M. Horbatsch, J. Alsing, Phys. Rev. D85, 122005 (2012). doi:10.1103/PhysRevD.85.122005 ADSGoogle Scholar
  111. 111.
    C.W. Misner, Phys. Rev. Lett. 28, 994 (1972). doi:10.1103/PhysRevLett.28.994 ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe University of MississippiUniversityUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations