Skip to main content

Advertisement

Log in

circRNA_0067717 promotes paclitaxel resistance in nasopharyngeal carcinoma by acting as a scaffold for TRIM41 and p53

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Circular RNAs (circRNAs) play important roles in tumour progression. This study aimed to explore the mechanism of hsa_circ_0067717 (termed circRNA_0067717) promoting paclitaxel resistance in nasopharyngeal carcinoma (NPC).

Methods

We assayed CNE-1 and HNE-2 parental cell lines and the corresponding paclitaxel-resistant NPC cell lines using circRNA microarrays. RNA pull-down assay, RNA immunoprecipitation, and RNA fluorescence in situ hybridization were used to identify the molecular mechanisms.

Results

Here, we confirm that circRNA_0067717 is significantly upregulated in NPC paclitaxel-resistant cells and is associated with paclitaxel resistance in NPC. Mechanistically, circRNA_0067717 functions as a scaffold for TRIM41 protein (a ubiquitin E3 ligase) and p53 protein. In nasopharyngeal carcinoma paclitaxel-resistant cells, the highly expressed circRNA_0067717 can bind to more TRIM41 and p53 protein, promoting TRIM41-induced p53 ubiquitination and degradation, resulting in a decrease in p53 protein level. Moreover, the 1–176 nt area of circRNA_0067717 and the 301–425 nt region of circRNA_0067717 are the binding sites for p53 and TRIM41, respectively. The resistance of NPC cells to paclitaxel can be reduced by blocking these binding regions of circRNA_0067717.

Conclusion

We demonstrate that circRNA_0067717 acts as a scaffold for TRIM41 and p53, enhancing paclitaxel chemoresistance in NPC by promoting TRIM41-induced p53 degradation via ubiquitination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The material supporting the conclusion of this study has been included within the article.

Abbreviations

NPC:

Nasopharyngeal carcinoma

circRNAs:

Circular RNAs

UPS:

Ubiquitin-Proteasome System

DUBs:

Deubiquitinating enzymes

RBP:

RNA Binding Protien

RIP:

RNA immunoprecipitation

FISH:

Fluorescence in situ hybridization

block-p53:

Blocking oligo for p53 binding site

block-TRIM41:

Blocking oligo for TRIM41 binding site

IC25 :

25% Inhibiting concentration

IC50 :

50% Inhibiting concentration

CHX:

Cycloheximide

MG132:

Proteasomal inhibitor

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017)

    Article  PubMed  Google Scholar 

  2. R. You, Y.S. Cao, P.Y. Huang, L. Chen, Q. Yang, Y.P. Liu, X. Zou, Y.N. Zhang, R. Jiang, M.X. Zhang et al., The Changing Therapeutic Role of Chemo-radiotherapy for Loco-regionally Advanced Nasopharyngeal Carcinoma from Two/Three-Dimensional Radiotherapy to Intensity-Modulated Radiotherapy: A Network Meta-Analysis. Theranostics 7(19), 4825–4835 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  3. R. Akhter, Circular RNA and Alzheimer’s Disease. Adv. Exp. Med. Biol. 1087, 239–243 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Liu, Y. Li, J. Zang, T. Zhang, Y. Li, Z. Tan, D. Ma, T. Zhang, S. Wang, Y. Zhang et al., CircOGDH Is a Penumbra Biomarker and Therapeutic Target in Acute Ischemic Stroke. Circ. Res. 130(6), 907–924 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. V.N.S. Garikipati, S.K. Verma, Z. Cheng, D. Liang, M.M. Truongcao, M. Cimini, Y. Yue, G. Huang, C. Wang, C. Benedict et al., Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat. Commun. 10(1), 4317 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. X. Gong, M. Tian, N. Cao, P. Yang, Z. Xu, S. Zheng, Q. Liao, C. Chen, C. Zeng, P. A. Jose et al., Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation. J. Clin. Invest. 131(24) (2021)

  7. J. Yu, Q.G. Xu, Z.G. Wang, Y. Yang, L. Zhang, J.Z. Ma, S.H. Sun, F. Yang, W.P. Zhou, Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J. Hepatol. 68(6), 1214–1227 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. Q. Chen, H. Wang, Z. Li, F. Li, L. Liang, Y. Zou, H. Shen, J. Li, Y. Xia, Z. Cheng et al., Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J. Hepatol. 76(1), 135–147 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. Z. Chen, L. He, L. Zhao, G. Zhang, Z. Wang, P. Zhu, and B. Liu, circREEP3 Drives Colorectal Cancer Progression via Activation of FKBP10 Transcription and Restriction of Antitumor Immunity. Adv. Sci. 9(13), 2105160 (2022)

  10. B. Capel, A. Swain, S. Nicolis, A. Hacker, M. Walter, P. Koopman, P. Goodfellow, R. Lovell-Badge, Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5), 1019–1030 (1993)

    Article  CAS  PubMed  Google Scholar 

  11. I.L. Patop, S. Wust, S. Kadener, Past, present, and future of circRNAs. EMBO J. 38(16), e100836 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  12. W.R. Jeck, J.A. Sorrentino, K. Wang, M.K. Slevin, C.E. Burd, J. Liu, W.F. Marzluff, N.E. Sharpless, Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2), 141–157 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S.P. Barrett, P.L. Wang, J. Salzman, Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4, e07540 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  14. T. Aktas, I. AvsarIlik, D. Maticzka, V. Bhardwaj, C. Pessoa Rodrigues, G. Mittler, T. Manke, R. Backofen, A. Akhtar, DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544(7648), 115–119 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. L. Errichelli, S. Dini Modigliani, P. Laneve, A. Colantoni, I. Legnini, D. Capauto, A. Rosa, R. De Santis, R. Scarfo, G. Peruzzi et al., FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 8, 14741 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Peng, Y. Tan, P. Yang, K. Jin, C. Zhang, W. Peng, L. Wang, J. Zhou, R. Chen, T. Wang et al., Circ-GALNT16 restrains colorectal cancer progression by enhancing the SUMOylation of hnRNPK. J. Exp. Clin. Cancer Res. 40(1), 272 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Z. Li, C. Huang, C. Bao, L. Chen, M. Lin, X. Wang, G. Zhong, B. Yu, W. Hu, L. Dai et al., Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22(3), 256–264 (2015)

    Article  PubMed  Google Scholar 

  18. Y. Zhang, X.O. Zhang, T. Chen, J.F. Xiang, Q.F. Yin, Y.H. Xing, S. Zhu, L. Yang, L.L. Chen, Circular intronic long noncoding RNAs. Mol. Cell. 51(6), 792–806 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. J. Guarnerio, M. Bezzi, J.C. Jeong, S.V. Paffenholz, K. Berry, M.M. Naldini, F. Lo-Coco, Y. Tay, A.H. Beck, P.P. Pandolfi, Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell 166(4), 1055–1056 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. X. Huang, Z. Li, Q. Zhang, W. Wang, B. Li, L. Wang, Z. Xu, A. Zeng, X. Zhang, X. Zhang et al., Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol. Cancer 18(1), 71 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  21. T. Yang, P. Shen, Q. Chen, P. Wu, H. Yuan, W. Ge, L. Meng, X. Huang, Y. Fu, Y. Zhang et al., FUS-induced circRHOBTB3 facilitates cell proliferation via miR-600/NACC1 mediated autophagy response in pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res. 40(1), 261 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. L. Wang, B. Li, X. Yi, X. Xiao, Q. Zheng, L. Ma, Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/beta-catenin pathway. Cell. Prolif. 54(3), e12981 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W. Ni, C. Jiang, Y. Wu, H. Zhang, L. Wang, J.H.N. Yik, D.R. Haudenschild, S. Fan, S. Shen, Z. Hu, CircSLC7A2 protects against osteoarthritis through inhibition of the miR-4498/TIMP3 axis. Cell. Prolif. 54(6), e13047 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Ashwal-Fluss, M. Meyer, N.R. Pamudurti, A. Ivanov, O. Bartok, M. Hanan, N. Evantal, S. Memczak, N. Rajewsky, S. Kadener, circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell. 56(1), 55–66 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. J. Luo, H. Liu, S. Luan, Z. Li, Guidance of circular RNAs to proteins’ behavior as binding partners. Cell. Mol. Life Sci. 76(21), 4233–4243 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. B. Li, L. Zhu, C. Lu, C. Wang, H. Wang, H. Jin, X. Ma, Z. Cheng, C. Yu, S. Wang et al., circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat. Commun. 12(1), 295 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Valletti, F. Marzano, G. Pesole, E. Sbisa, A. Tullo, Targeting Chemoresistant Tumors: Could TRIM Proteins-p53 Axis Be a Possible Answer? Int. J. Mol. Sci. 20(7) (2019)

  28. A.M. Boutelle, L.D. Attardi, p53 and Tumor Suppression: It Takes a Network. Trends Cell. Biol. 31(4), 298–310 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C.J. Brown, C.F. Cheok, C.S. Verma, D.P. Lane, Reactivation of p53: from peptides to small molecules. Trends Pharmacol. Sci. 32(1), 53–62 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. Y.L. Lan, Y.J. Zou, J.C. Lou, J.S. Xing, X. Wang, S. Zou, B.B. Ma, Y. Ding, B. Zhang, The sodium pump alpha1 subunit regulates bufalin sensitivity of human glioblastoma cells through the p53 signaling pathway. Cell Biol. Toxicol. 35(6), 521–539 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. E. Reinstein, A. Ciechanover, Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann. Intern. Med. 145(9), 676–684 (2006)

    Article  PubMed  Google Scholar 

  32. L.N. Micel, J.J. Tentler, P.G. Smith, G.S. Eckhardt, Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J. Clin. Oncol. 31(9), 1231–1238 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Y. Cisse, S. Pyrdziak, N. Firmin, L. Gayte, M. Heuillet, F. Bellvert, M. Fuentes, H. Delpech, R. Riscal, G. Arena et al., Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Sci. Transl. Med. 12(547) (2020)

  34. D. Cui, X. Xiong, J. Shu, X. Dai, Y. Sun, and Y. Zhao, FBXW7 Confers Radiation Survival by Targeting p53 for Degradation. Cell. Reports. 30(2), 497–509.e494 (2020)

  35. Y. Zhu, D. He, H. Bo, Z. Liu, M. Xiao, L. Xiang, J. Zhou, Y. Liu, X. Liu, L. Gong et al., The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo-TAZ pathway. Oncogene 38(32), 6065–6081 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. X. Liu, J. Liu, W. Xiao, Q. Zeng, H. Bo, Y. Zhu, L. Gong, D. He, X. Xing, R. Li et al., SIRT1 regulates N(6) -methyladenosine RNA modification in hepatocarcinogenesis by inducing RANBP2-dependent FTO SUMOylation. Hepatology 72(6), 2029–2050 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. J. Liu, Y. Zhang, Q. Zeng, H. Zeng, X. Liu, P. Wu, H. Xie, L. He, Z. Long, X. Lu et al., Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Sci. Adv. 5(9), eaaw6499 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. Lang, A. Armaos, G.G. Tartaglia, RNAct: Protein-RNA interaction predictions for model organisms with supporting experimental data. Nucleic Acids Res. 47(D1), D601–D606 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. F. Agostini, A. Zanzoni, P. Klus, D. Marchese, D. Cirillo, G.G. Tartaglia, catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29(22), 2928–2930 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. U.K. Muppirala, V.G. Honavar, D. Dobbs, Predicting RNA-protein interactions using only sequence information. BMC Bioinform. 12, 489 (2011)

    Article  CAS  Google Scholar 

  41. M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Antczak, M. Popenda, T. Zok, J. Sarzynska, T. Ratajczak, K. Tomczyk, R.W. Adamiak, M. Szachniuk, New functionality of RNAComposer: an application to shape the axis of miR160 precursor structure. Acta Biochim. Pol. 63(4), 737–744 (2016)

    CAS  PubMed  Google Scholar 

  43. Y. Li, P. Xie, L. Lu, J. Wang, L. Diao, Z. Liu, F. Guo, Y. He, Y. Liu, Q. Huang et al., An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat. Commun. 8(1), 347 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Y. Yan, D. Zhang, P. Zhou, B. Li, S.Y. Huang, HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 45(W1), W365–W373 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. I. Tuszynska, M. Magnus, K. Jonak, W. Dawson, J.M. Bujnicki, NPDock: a web server for protein-nucleic acid docking. Nucleic Acids Res. 43(W1), W425-430 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. P. Bardou, J. Mariette, F. Escudie, C. Djemiel, C. Klopp, jvenn: an interactive Venn diagram viewer. BMC Bioinform. 15, 293 (2014)

    Article  Google Scholar 

  47. L. Wang, S. Liu, Y. Mao, J. Xu, S. Yang, H. Shen, W. Xu, W. Fan, J. Wang, CircRNF13 regulates the invasion and metastasis in lung adenocarcinoma by targeting miR-93-5p. Gene 671, 170–177 (2018)

    Article  CAS  PubMed  Google Scholar 

  48. X. Shi, J. Yang, M. Liu, Y. Zhang, Z. Zhou, W. Luo, K.M. Fung, C. Xu, M.S. Bronze, C.W. Houchen et al., Circular RNA ANAPC7 inhibits tumor growth and muscle wasting via PHLPP2-AKT-TGF-beta signaling axis in pancreatic cancer. Gastroenterology 162(7), 2004–2017 (2022)

    Article  CAS  PubMed  Google Scholar 

  49. H.N. Fan, Z.Y. Chen, X.Y. Chen, M. Chen, Y.C. Yi, J.S. Zhu, J. Zhang, METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol. Cancer 21(1), 51 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J. Liu, S. Song, S. Lin, M. Zhang, Y. Du, D. Zhang, W. Xu, H. Wang, Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Prolif. 52(4), e12648 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  51. P. Liu, X. Li, X. Guo, J. Chen, C. Li, M. Chen, L. Liu, X. Zhang, X. Zu, Circular RNA DOCK1 promotes bladder carcinoma progression via modulating circDOCK1/hsa-miR-132-3p/Sox5 signalling pathway. Cell Prolif. 52(4), e12614 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  52. F. Rossi, M. Beltran, M. Damizia, C. Grelloni, A. Colantoni, A. Setti, G. Di Timoteo, D. Dattilo, A. Centron-Broco, C. Nicoletti et al., Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol. Cell 82(1), 75-89 e79 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D. Tsitsipatis, I. Grammatikakis, R.K. Driscoll, X. Yang, K. Abdelmohsen, S.C. Harris, J.H. Yang, A.B. Herman, M.W. Chang, R. Munk et al., AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. Nucleic Acids Res. 49(3), 1631–1646 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y. Zeng, W.W. Du, Y. Wu, Z. Yang, F.M. Awan, X. Li, W. Yang, C. Zhang, Q. Yang, A. Yee et al., A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics 7(16), 3842–3855 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. W.W. Du, L. Fang, W. Yang, N. Wu, F.M. Awan, Z. Yang, B.B. Yang, Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24(2), 357–370 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. W.W. Du, W. Yang, X. Li, F.M. Awan, Z. Yang, L. Fang, J. Lyu, F. Li, C. Peng, S.N. Krylov et al., A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 37(44), 5829–5842 (2018)

    Article  CAS  PubMed  Google Scholar 

  57. Z. Zhou, Z. Ji, Y. Wang, J. Li, H. Cao, H.H. Zhu, W.Q. Gao, TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology 147(5), 1043–1054 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. T. Sho, T. Tsukiyama, T. Sato, T. Kondo, J. Cheng, T. Saku, M. Asaka, S. Hatakeyama, TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim. Biophys. Acta 1813(6), 1245–1253 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81874137), Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(GZ1699), key research and development projects in Hunan Province(2022SK2022), the science and technology innovation Program of Hunan Province (2020RC4011), the Hunan Province Science and Technology Talent Promotion Project (2019TJ-Q10), Scientific research project of Hunan Provincial Health Commission (202209034683),Young Scholars of "Furong Scholar Program" in Hunan Province, and the Wisdom Accumulation and Talent Cultivation Project of the Third xiangya hosipital of Central South University (BJ202001), and Hunan Provincial Innovation Foundation for Postgraduate (CX20190253).

Author information

Authors and Affiliations

Authors

Contributions

Y.-X.C. and K.C. designed the study. Y.-X.C., Z.-W.W. and M.-Q.X. performed experiments. Y.-X.C. and Y.-X.Z. analyzed and interpreted the data. Y.-X.C. wrote this manuscript. Z.-W.W., Y.-Y.Z., H.-T.C.and K.C. edited and revised the manuscript. All authors have seen and approved the final version of the manuscript.

Corresponding author

Correspondence to Ke Cao.

Ethics declarations

Ethical Approval

All experiments were performed following the guidelines of the Institutional Animal Care and Use Committee.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4339 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhu, Y., Xiao, M. et al. circRNA_0067717 promotes paclitaxel resistance in nasopharyngeal carcinoma by acting as a scaffold for TRIM41 and p53. Cell Oncol. 46, 677–695 (2023). https://doi.org/10.1007/s13402-023-00776-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00776-y

Keywords

Navigation