Skip to main content

Advertisement

Log in

Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Many of the hallmarks of cancer are not inherently unique to cancer, but rather represent a re-enactment of normal host responses and activities. A vivid example is aerobic glycolysis (‘Warburg effect’), which is used not only by cancer cells but also by normal cells that undergo rapid proliferation. A common feature of this metabolic adaptation is a shift in the expression of pyruvate kinase (PK) isoform M1 to isoform M2. Here, we highlight the key role of PKM2 in shifting cancer metabolism between ATP production and biosynthetic processes. Since anabolic processes are highly energy dependent, the fate of glucose in energy production versus the contribution of carbon in biosynthetic processes needs to be finely synchronised. PKM2 acts to integrate cellular signalling and allosteric regulation of metabolites in order to align metabolic activities with the changing needs of the cell.

Conclusions

The central role of PKM2 in directing the flow of carbon between catabolic (ATP-producing) and anabolic processes provides unique opportunities for extending the therapeutic window of currently available and/or novel anti-neoplastic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)

    Article  PubMed  CAS  Google Scholar 

  2. J.M.S. Lemons, X.-J. Feng, B.D. Bennett, A. Legesse-Miller, E.L. Johnson, I. Raitman, E.A. Pollina, H.A. Rabitz, J.D. Rabinowitz, H.A. Coller, Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. G. Eelen, P. de Zeeuw, M. Simons, P. Carmeliet, Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116, 1231–1244 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. L.A.J. O’Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016)

  5. S.Y. Lunt, M.G. Vander Heiden, Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. C.T. Jones, Fertil, fetal metabolism and fetal growth. J. Reprod. 47, 189–201 (1976)

    Article  CAS  Google Scholar 

  7. J. Wahlberg, B. Ekman, L. Nyström, U. Hanson, B. Persson, H.J. Arnqvist, Gestational diabetes: Glycaemic predictors for fetal macrosomia and maternal risk of future diabetes. Diabetes Res. Clin. Pract. 114, 99–105 (2016)

    Article  PubMed  CAS  Google Scholar 

  8. A. Mohammadbeigi, F. Farhadifar, N. Soufizadeh, N. Mohammadsalehi, M. Rezaiee, M. Aghaei, Fetal macrosomia: Risk factors, maternal, and perinatal outcome. Ann. Med. Health Sci. Res. 3, 546 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. M. Persson, D. Pasupathy, U. Hanson, M. Norman, Birth size distribution in 3,705 infants born to mothers with type 1 diabetes: A population-based study. Diabetes Care 34, 1145–1149 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  10. L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)

    Article  CAS  Google Scholar 

  11. H. Makinoshima, M. Takita, K. Saruwatari, S. Umemura, Y. Obata, G. Ishii, S. Matsumoto, E. Sugiyama, A. Ochiai, R. Abe, K. Goto, H. Esumi, K. Tsuchihara, Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) Axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J. Biol. Chem. 290, 17495–17504 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. M. Muller, M. Mentel, J.J. van Hellemond, K. Henze, C. Woehle, S.B. Gould, R.-Y. Yu, M. van der Giezen, A.G.M. Tielens, W.F. Martin, Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. T. Pfeiffer, S. Schuster, S. Bonhoeffer, Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)

    Article  PubMed  CAS  Google Scholar 

  14. T.L. Dayton, T. Jacks, M.G. Vander Heiden, PKM2, cancer metabolism, and the road ahead. EMBO Rep. 17, 1721–1730 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. M. Saqcena, S. Mukhopadhyay, C. Hosny, A. Alhamed, A. Chatterjee, D.A. Foster, Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene 34, 2672–2680 (2015)

    Article  PubMed  CAS  Google Scholar 

  16. J. Son, C.A. Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R.M. Perera, C.R. Ferrone, E. Mullarky, N. Shyh-Chang, Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. S. Cardaci, M.R. Ciriolo, TCA cycle defects and cancer: When metabolism tunes redox state. Int. J. Cell Biol. 2012, 1–9 (2012)

    Article  CAS  Google Scholar 

  18. A. King, M.A. Selak, E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. M. Sciacovelli, E. Gonçalves, T.I. Johnson, V.R. Zecchini, E. Gaude, A.V. Drubbel, S.J. Theobald, S.R. Abbo, M.G. Tran, V. Rajeeve, Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537(544), 544–547 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Z. Xie, J. Dai, L. Dai, M. Tan, Z. Cheng, Y. Wu, J.D. Boeke, Y. Zhao, Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics 11, 100–107 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. X. Mu, T. Zhao, C. Xu, W. Shi, B. Geng, J. Shen, C. Zhang, J. Pan, J. Yang, S. Hu, Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 8, 13174 (2017)

    PubMed  PubMed Central  Google Scholar 

  22. A. Stincone, A. Prigione, T. Cramer, M. Wamelink, K. Campbell, E. Cheung, V. Olin-Sandoval, N. Grüning, A. Krüger, M. Tauqeer Alam, The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90, 927–963 (2015)

    Article  PubMed  Google Scholar 

  23. A.C. Newman, O.D.K. Maddocks, One-carbon metabolism in cancer. Br. J. Cancer 116, 1499–1504 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. E.H. Ma, G. Bantug, T. Griss, S. Condotta, R.M. Johnson, B. Samborska, N. Mainolfi, V. Suri, H. Guak, M.L. Balmer, Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017)

    Article  PubMed  CAS  Google Scholar 

  25. K.C. Patra, N. Hay, The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. J. Fan, J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, J.D. Rabinowitz, Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. M. Ost, S. Keipert, E.M. van Schothorst, V. Donner, I. van der Stelt, A.P. Kipp, K.-J. Petzke, M. Jove, R. Pamplona, M. Portero-Otin, Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 29, 1314–1328 (2015)

    Article  PubMed  CAS  Google Scholar 

  28. K. Yamada, T. Noguchi, Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem. J. 337(Pt 1), 1–11 (1999)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. E.L. Pearce, M.C. Poffenberger, C.H. Chang, R.G. Jones, Fueling immunity: Insights into metabolism and lymphocyte function. Science 342, 1242454 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. C.J. David, M. Chen, M. Assanah, P. Canoll, J.L. Manley, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. R. Sears, F. Nuckolls, E. Haura, Y. Taya, K. Tamai, J.R. Nevins, Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. C.D. Little, M.M. Nau, D.N. Carney, A.F. Gazdar, J.D. Minna, Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306, 194–196 (1983)

    Article  PubMed  CAS  Google Scholar 

  33. W. Yang, Y. Zheng, Y. Xia, H. Ji, X. Chen, F. Guo, C.A. Lyssiotis, K. Aldape, L.C. Cantley, Z. Lu, ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. T. Hitosugi, S. Kang, M.G. Vander Heiden, T.W. Chung, S. Elf, K. Lythgoe, S. Dong, S. Lonial, X. Wang, G.Z. Chen, J. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel, T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. H.R. Christofk, M.G. Vander Heiden, N. Wu, J.M. Asara, L.C. Cantley, Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. I. Nemazanyy, C. Espeillac, M. Pende, G. Panasyuk, Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochem. Soc. Trans. 41, 917–922 (2013)

    Article  PubMed  CAS  Google Scholar 

  37. P. Wang, C. Sun, T. Zhu, Y. Xu, Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell 6, 275–287 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. B. Chaneton, P. Hillmann, L. Zheng, A.C.L. Martin, O.D.K. Maddocks, A. Chokkathukalam, J.E. Coyle, A. Jankevics, F.P. Holding, K.H. Vousden, C. Frezza, M. O’Reilly, E. Gottlieb, Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016)

    Article  PubMed  CAS  Google Scholar 

  41. C. Kung, J. Hixon, S. Choe, K. Marks, S. Gross, E. Murphy, B. DeLaBarre, G. Cianchetta, S. Sethumadhavan, X. Wang, Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. H.P. Morgan, F.J. O’Reilly, M.A. Wear, J.R. O’Neill, L.A. Fothergill-Gilmore, T. Hupp, M.D. Walkinshaw, M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 110, 5881–5886 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. A.M. Castellaro, A. Tonda, H.H. Cejas, H. Ferreyra, B.L. Caputto, O.A. Pucci, G.A. Gil, Oxalate induces breast cancer. BMC Cancer 15, 761 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. T. Sakata, G. Ferdous, T. Tsuruta, T. Satoh, S. Baba, T. Muto, A. Ueno, Y. Kanai, H. Endou, I. Okayasu, L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol. Int. 59, 7–18 (2009)

    Article  PubMed  CAS  Google Scholar 

  45. H. Nawashiro, N. Otani, N. Shinomiya, S. Fukui, H. Ooigawa, K. Shima, H. Matsuo, Y. Kanai, H. Endou, L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer 119, 484–492 (2006)

    Article  PubMed  CAS  Google Scholar 

  46. M.-A. Bjornsti, P.J. Houghton, The TOR pathway: A target for cancer therapy. Nat. Rev. 4, 335–348 (2004)

    Article  CAS  Google Scholar 

  47. D. Anastasiou, G. Poulogiannis, J.M. Asara, M.B. Boxer, J.K. Jiang, M. Shen, G. Bellinger, A.T. Sasaki, J.W. Locasale, D.S. Auld, C.J. Thomas, M.G. Vander Heiden, L.C. Cantley, Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. W.J. Israelsen, T.L. Dayton, S.M. Davidson, B.P. Fiske, A.M. Hosios, G. Bellinger, J. Li, Y. Yu, M. Sasaki, J.W. Horner, PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013)

    Article  PubMed  CAS  Google Scholar 

  49. T.L. Dayton, V. Gocheva, K.M. Miller, W.J. Israelsen, A. Bhutkar, C.B. Clish, S.M. Davidson, A. Luengo, R.T. Bronson, T. Jacks, M.G. Vander Heiden, Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1020–1033 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. A.N. Lau, W.J. Israelsen, J. Roper, M.J. Sinnamon, L. Georgeon, T.L. Dayton, A.L. Hillis, O.H. Yilmaz, D. Di Vizio, K.E. Hung, M.G. Vander Heiden, PKM2 is not required for colon cancer initiated by APC loss. Cancer Metab. 5, 10 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  51. X. Gao, H. Wang, J.J. Yang, X. Liu, Z.R. Liu, Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. W. Yang, Y. Xia, D. Hawke, X. Li, J. Liang, D. Xing, K. Aldape, T. Hunter, W.K. Alfred Yung, Z. Lu, PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. S. Wolff, J.S. Weissman, A. Dillin, Differential scales of protein quality control. Cell 157, 52–64 (2014)

    Article  PubMed  CAS  Google Scholar 

  54. F. Buttgereit, M.D. Brand, A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312, 163–167 (1995)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. A. Mullard, Cancer metabolism pipeline breaks new ground. Nat. Rev. Drug Discov. 15, 735–737 (2016)

    Article  PubMed  CAS  Google Scholar 

  56. K.M. Nieman, H.A. Kenny, C.V. Penicka, A. Ladanyi, R. Buell-Gutbrod, M.R. Zillhardt, I.L. Romero, M.S. Carey, G.B. Mills, G.S. Hotamisligil, S.D. Yamada, M.E. Peter, K. Gwin, E. Lengyel, Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011)

  57. H. Ye, B. Adane, N. Khan, T. Sullivan, M. Minhajuddin, M. Gasparetto, B. Stevens, S. Pei, M. Balys, J.M. Ashton, Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros, N. Flomenberg, A.K. Witkiewicz, P.G. Frank, M.C. Casimiro, C. Wang, P. Fortina, S. Addya, R.G. Pestell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009)

    Article  PubMed  CAS  Google Scholar 

  59. L. Yang, S. Venneti, D. Nagrath, Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017)

    Article  PubMed  CAS  Google Scholar 

  60. S.L. Warner, K.J. Carpenter, D.J. Bearss, Activators of PKM2 in cancer metabolism. Future Med. Chem. 6, 1167–1178 (2014)

    Article  PubMed  CAS  Google Scholar 

  61. S.Y. Lunt, V. Muralidhar, A.M. Hosios, W.J. Israelsen, D.Y. Gui, L. Newhouse, M. Ogrodzinski, V. Hecht, K. Xu, P.N.M. Acevedo, D.P. Hollern, G. Bellinger, T.L. Dayton, S. Christen, I. Elia, A.T. Dinh, G. Stephanopoulos, S.R. Manalis, M.B. Yaffe, E.R. Andrechek, S.M. Fendt, M.G. Vander Heiden, Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95–107 (2015)

    Article  PubMed  CAS  Google Scholar 

  62. S.P. Gravel, L. Hulea, N. Toban, E. Birman, M.J. Blouin, M. Zakikhani, Y. Zhao, I. Topisirovic, J. St-Pierre, M. Pollak, Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014)

    Article  PubMed  CAS  Google Scholar 

  63. A. Janzer, N.J. German, K.N. Gonzalez-Herrera, J.M. Asara, M.C. Haigis, K. Struhl, Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl. Acad. Sci. U.S.A. 111, 10574–10579 (2014)

  64. E.M. Palsson-Mcdermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy, L.E. Gleeson, M.W.M. Van Den Bosch, S.R. Quinn, R. Domingo-Fernandez, D.G.W. Johnson, J.K. Jiang, W.J. Israelsen, J. Keane, C. Thomas, C. Clish, M. Vanden Heiden, R.J. Xavier, L.A.J. O’Neill, Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. A. Yuan, Y.J. Hsiao, H.Y. Chen, H.W. Chen, C.C. Ho, Y.Y. Chen, Y.C. Liu, T.H. Hong, S.L. Yu, J.J. W. Chen, P.C. Yang, Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep. 5, 14273 (2015)

  66. M. Zhang, Y. He, X. Sun, Q. Li, W. Wang, A. Zhao, W. Di, A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 7, 1 (2014)

    Article  Google Scholar 

  67. G. Comito, E. Giannoni, C.P. Segura, P. Barcellos-De-Souza, M.R. Raspollini, G. Baroni, M. Lanciotti, S. Serni, P. Chiarugi, Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014)

    Article  PubMed  CAS  Google Scholar 

  68. L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell. Oncol. 40, 471–482 (2017)

    Article  CAS  Google Scholar 

  69. J.I. Fletcher, R.T. Williams, M.J. Henderson, M.D. Norris, M. Haber, ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat. 26, 1–9 (2016)

    Article  PubMed  Google Scholar 

  70. R.J. Kathawala, P. Gupta, C.R. Ashby, Z.-S. Chen, The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 18, 1–17 (2015)

    Article  PubMed  Google Scholar 

  71. Y. Kam, T. Das, H. Tian, P. Foroutan, E. Ruiz, G. Martinez, S. Minton, R.J. Gillies, R.A. Gatenby, Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with “ersatzdroges”. Int. J. Cancer 136, E188–E196 (2015)

    Article  PubMed  CAS  Google Scholar 

  72. C. Pan, X. Wang, K. Shi, Y. Zheng, J. Li, Y. Chen, L. Jin, Z. Pan, MiR-122 Reverses the doxorubicinresistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One 11, e0152090 (2016)

  73. Y. Lin, F. Lv, F. Liu, X. Guo, Y. Fan, F. Gu, J. Gu, L. Fu, High expression of pyruvate kinase M2 is associated with Chemosensitivity to Epirubicin and 5-fluorouracil in breast Cancer. J. Cancer 6, 1130–1139 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav van Niekerk.

Ethics declarations

Conflicts of interest

The authors have no potential conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Niekerk, G., Engelbrecht, AM. Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target. Cell Oncol. 41, 343–351 (2018). https://doi.org/10.1007/s13402-018-0383-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0383-7

Keywords

Navigation