Skip to main content

Advertisement

Log in

BMP9 regulates cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer cells frequently metastasize to distant organs, including bone. Interactions between breast cancer cells and the bone microenvironment are known to enhance tumor growth and osteolytic damage. Here we investigated whether BMP9 (a secretary protein) may change the bone microenvironment and, by doing so, regulate the cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells.

Methods

After establishing a co-culture system composed of MDA-MB-231breast cancer cells and HS-5 bone marrow-derived mesenchymal stem cells, and exposure of this system to BMP9 conditioned media, we assessed putative changes in migration and invasion capacities of MDA-MB-231 cells and concomitant changes in osteogenic marker expressionin HS-5 cells and metastases-related genes in MDA-MB-231 cells.

Results

We found that BMP9 can inhibit the migration and invasion of MDA-MB-231 cells, and promote osteogenesis and proliferation of HS-5 cells, in the co-culture system. We also found that the BMP9-induced inhibition of migration and invasion of MDA-MB-231 cells may be caused by a decreased RANK ligand (RANKL) secretion by HS-5 cells, leading to a block in the AKT signaling pathway.

Conclusions

From our data we conclude that BMP9 inhibits the migration and invasion of breast cancer cells, and promotes the osteoblastic differentiation and proliferation of bone marrow-derived mesenchymal stem cells by regulating cross-talk between these two types of cells through the RANK/RANKL signaling axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMP9:

Bone morphogenetic protein 9

BCC:

Breast cancer cells

BMSC:

Bone marrow –derived mesenchymal stem cells

MSCs:

Mesenchymal stem cells

OPG:

Osteoprotegerin

RANK:

Receptor activator of nuclear factor-kappa B

RANKL:

The RANK ligand

Ad-BMP9:

Adenovirus expressing BMP9 protein

Ad-GFP:

Adenovirus expressing green fluorescent protein

ERK1/2:

Extracellular signal regulated kinases

p-ERK1/2:

Phospho-ERK1/2

OPN:

Osteopontin

OCN:

Osteocalcin

IL-6:

Interleukin-6

IL11:

Interleukin-11

PTH-rp:

Parathyroid hormone-related protein

MMP9:

Matrix metallopeptidase 9

MMP2:

Matrix metallopeptidase 2

DKK1:

Dickkopf WNT signaling pathway inhibitor 1

ALP:

Alkaline phosphatase

MAPK:

Mitogen-activated protein kinase

GSK-3β:

Glycogen synthase kinase-3β

pGSK-3β:

Phospho-GSK-3β

CTGF:

Connective Tissue Growth Factor

LRP-6:

Low density lipoprotein receptor-related protein 6

BMP9-CM:

BMP9 condition medium

GFR-CM:

GFP Vector control condition medium

References

  1. A. Halon, P. Donizy, P. Surowiak, R. Matkowski, ERM/Rho protein expression in ductal breast cancer: a 15 year follow-up. Cell Oncol (Dordr) 36, 181–190 (2013)

    Article  CAS  Google Scholar 

  2. A. Lipton, R. Uzzo, R.J. Amato, G.K. Ellis, B. Hakimian, G.D. Roodman, M.R. Smith, The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors. J Natl Compr Cancer Netw 7(Suppl 7), S1–S29 (2009). quiz S30

    CAS  Google Scholar 

  3. I. Zinonos, K.W. Luo, A. Labrinidis, V. Liapis, S. Hay, V. Panagopoulos, M. Denichilo, C.H. Ko, G.G. Yue, C.B. Lau, W. Ingman, V. Ponomarev, G.J. Atkins, D.M. Findlay, A.C. Zannettino, A. Evdokiou, Pharmacologic inhibition of bone resorption prevents cancer-induced osteolysis but enhances soft tissue metastasis in a mouse model of osteolytic breast cancer. Int. J. Oncol. 45, 532–540 (2014)

    PubMed  CAS  PubMed Central  Google Scholar 

  4. R.L. Theriault, R.L. Theriault, Biology of bone metastases. Cancer Control 19, 92–101 (2012)

    PubMed  Google Scholar 

  5. R. Krawetz, Y.E. Wu, D.E. Rancourt, J. Matyas, Osteoblasts suppress high bone turnover caused by osteolytic breast cancer in-vitro. Exp. Cell Res. 315, 2333–2342 (2009)

    Article  PubMed  CAS  Google Scholar 

  6. P.O. Favaron, A. Mess, S.E. Will, P.C. Maiorka, M.F. de Oliveira, M.A. Miglino, Yolk sac mesenchymal progenitor cells from New World mice (Necromys lasiurus) with multipotent differential potential. PLoS One 9, e95575 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  7. J. Luo, M. Tang, J. Huang, B.C. He, J.L. Gao, L. Chen, G.W. Zuo, W. Zhang, Q. Luo, Q. Shi, B.Q. Zhang, Y. Bi, X. Luo, W. Jiang, Y. Su, J. Shen, S.H. Kim, E. Huang, Y. Gao, J.Z. Zhou, K. Yang, H.H. Luu, X. Pan, R.C. Haydon, Z.L. Deng, T.C. He, TGFbeta/BMP type I receptors ALK1 and ALK2 are essential for BMP9-induced osteogenic signaling in mesenchymal stem cells. J. Biol. Chem. 285, 29588–29598 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. D. Mendoza-Villanueva, L. Zeef, P. Shore, Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFβ-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res. 13, R106 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. A.P. Molloy, F.T. Martin, R.M. Dwyer, T.P. Griffin, M. Murphy, F.P. Barry, T. O’Brien, M.J. Kerin, Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int. J. Cancer 124, 326–332 (2009)

    Article  PubMed  CAS  Google Scholar 

  10. K. Wang, H. Feng, W. Ren, X. Sun, J. Luo, M. Tang, L. Zhou, Y. Weng, T.C. He, Y. Zhang, BMP9 inhibits the proliferation and invasiveness of breast cancer cells MDA-MB-231. J. Cancer Res. Clin. Oncol. 137, 1687–1696 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. X. Sun, K. Wang, H. Feng, Effects and possible mechanism of BMP9 on the bone metastasis of human breast cancer cells MDA-MB- 231. Chin Biotechnol 32, 7–13 (2012)

    Google Scholar 

  12. N. Tang, W.X. Song, J. Luo, X. Luo, J. Chen, K.A. Sharff, Y. Bi, B.C. He, J.Y. Huang, G.H. Zhu, Y.X. Su, W. Jiang, M. Tang, Y. He, Y. Wang, L. Chen, G.W. Zuo, J. Shen, X. Pan, R.R. Reid, H.H. Luu, R.C. Haydon, T.C. He, BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J. Cell. Mol. Med. 13, 2448–2464 (2009)

    Article  PubMed  Google Scholar 

  13. N. Serna-Marquez, S. Villegas-Comonfort, O. Galindo-Hernandez, N. Navarro-Tito, A. Millan, E.P. Salazar, Role of LOXs and COX-2 on FAK activation and cell migration induced by linoleic acid in MDA-MB-231 breast cancer cells. Cell Oncol 36, 65–77 (2013)

    Article  CAS  Google Scholar 

  14. J.S. Park, S.Y. Choi, J.H. Lee, J.H. Lee, M. Lee, E.S. Nam, A.L. Jeong, S. Lee, S. Han, M.S. Lee, J.S. Lim, Y. Yoon do, Y. Kwon, Y. Yang, Interleukin-32β stimulates migration of MDA-MB-231 and MCF-7cells via the VEGF-STAT3 signaling pathway. Cell Oncol 36, 493–503 (2013)

    Article  CAS  Google Scholar 

  15. H.H. Luu, W.X. Song, X. Luo, D. Manning, J. Luo, Z.L. Deng, K.A. Sharff, A.G. Montag, R.C. Haydon, T.C. He, Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J. Orthop. Res. 25, 665–677 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. J.A. Sterling, S.A. Guelcher, Bone structural components regulating sites of tumor metastasis. Curr Osteoporos Rep 9, 89–95 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  17. J.L. Gilmore, J.A. Scott, Z. Bouizar, A. Robling, S.E. Pitfield, D.J. Riese 2nd, J. Foley, Amphiregulin-EGFR signaling regulates PTHrP gene expression in breast cancer cells. Breast Cancer Res. Treat. 110, 493–505 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. S. Ley, A. Weigert, B. Weichand, N. Henke, B. Mille-Baker, R.A. Janssen, B. Brune, The role of TRKA signaling in IL-10 production by apoptotic tumor cell-activated macrophages. Oncogene 32, 631–640 (2013)

    Article  PubMed  CAS  Google Scholar 

  19. J.Y. Jang, Y.K. Jeon, C.W. Kim, Degradation of HER2/neu by ANT2 shRNA suppresses migration and invasiveness of breast cancer cells. BMC Cancer 10, 391 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  20. K. Tawara, J.T. Oxford, C.L. Jorcyk, Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag. Res. 3, 177–189 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Y. Guo, P.F. Li, X.C. Shu, H. Deng, H.L. Ma, L. Sun, Involvement of Wnt/beta-catenin signaling in the osteogenesis of bone marrow mesenchymal stem cells induced by drynaria total flavonoids. Zhonghua Yi Xue Za Zhi 92, 2288–2291 (2012)

    PubMed  CAS  Google Scholar 

  22. L. Zhang, Y. Teng, Y. Zhang, J. Liu, L. Xu, J. Qu, K. Hou, X. Yang, Y. Liu, X. Qu, C-Src-mediated RANKL-induced breast cancer cell migration by activation of the ERK and Akt pathway. Oncol Lett 3, 395–400 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Y. Zhang, L. Wang, M. Zhang, M. Jin, C. Bai, X. Wang, Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway. J. Cell. Physiol. 227, 35–43 (2012)

    Article  PubMed  CAS  Google Scholar 

  24. S. Ibaragi, T. Shimo, M. Iwamoto, N.M. Hassan, S. Kodama, S. Isowa, A. Sasaki, Parathyroid hormone-related peptide regulates matrix metalloproteinase-13 gene expression in bone metastatic breast cancer cells. Anticancer Res. 30, 5029–5036 (2010)

    PubMed  CAS  Google Scholar 

  25. L. Zhang, Y. Teng, Y. Zhang, J. Liu, L. Xu, J. Qu, K. Hou, Y. Liu, X. Qu, Proteasome inhibitor bortezomib (PS-341) enhances RANKL-induced MDA-MB-231 breast cancer cell migration. Mol Med Rep 5, 580–584 (2012)

    PubMed  Google Scholar 

  26. L. Ye, H. Kynaston, W.G. Jiang, Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. Mol. Cancer Res. 6, 1594–1606 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. L. Ye, H. Kynaston, W.G. Jiang, Bone morphogenetic protein-10 suppresses the growth and aggressiveness of prostate cancer cells through a Smad independent pathway. J. Urol. 181, 2749–2759 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. W. Irvin Jr., H.B. Muss, D.K. Mayer, Symptom management in metastatic breast cancer. Oncologist 16, 1203–1214 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Y.C. Chen, D.M. Sosnoski, A.M. Mastro, Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res. 12, 215 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. W. Ren, X. Sun, K. Wang, H. Feng, Y. Liu, C. Fei, S. Wan, W. Wang, J. Luo, Q. Shi, M. Tang, G. Zuo, Y. Weng, T. He, Y. Zhang, BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression. Mol. Biol. Rep. 41, 1373–1383 (2014)

    Article  PubMed  CAS  Google Scholar 

  31. Y.H. Wang, Y.Y. Dong, W.M. Wang, X.Y. Xie, Z.M. Wang, R.X. Chen, J. Chen, D.M. Gao, J.F. Cui, Z.G. Ren, Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines. J. Exp. Clin. Cancer Res. 32, 51 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. A. De Luca, L. Lamura, M. Gallo, V. Maffia, N. Normanno, Mesenchymal stem cell-derived interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. J. Cell. Biochem. 113, 3363–3370 (2012)

    Article  PubMed  Google Scholar 

  33. L.E. Wright, J.B. Frye, A.L. Lukefahr, B.N. Timmermann, K.S. Mohammad, T.A. Guise, J.L. Funk, Curcuminoids block TGF-β signaling in human breast cancer cells and limit osteolysis in a murine model of breast cancer bone metastasis. J. Nat. Prod. 76, 316–321 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. S. Das, R.S. Samant, L.A. Shevde, Hedgehog signaling induced by breast cancer cells promotes osteoclastogenesis and osteolysis. J. Biol. Chem. 286, 9612–9622 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. S. Das, J.A. Tucker, S. Khullar, R.S. Samant, L.A. Shevde, Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases. PLoS One 7, e34374 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. T.A. Owen, M. Aronow, V. Shalhoub, L.M. Barone, L. Wilming, M.S. Tassinari, M.B. Kennedy, S. Pockwinse, J.B. Lian, G.S. Stein, Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 143, 420–430 (1990)

    Article  PubMed  CAS  Google Scholar 

  37. G. Bu, W. Lu, C.C. Liu, K. Selander, T. Yoneda, C. Hall, E.T. Keller, Y. Li, Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases. Int. J. Cancer 123, 1034–1042 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Z. Zhai, X. Qu, W. Yan, H. Li, G. Liu, X. Liu, T. Tang, A. Qin, K. Dai, Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling. Breast Cancer Res. Treat. 144, 33–45 (2014)

    Article  PubMed  CAS  Google Scholar 

  39. N. Kurio, T. Shimo, T. Fukazawa, M. Takaoka, T. Okui, N.M. Hassan, T. Honami, S. Hatakeyama, M. Ikeda, Y. Naomoto, A. Sasaki, Anti-tumor effect in human breast cancer by TAE226, a dual inhibitor for FAK and IGF-IR in vitro and in vivo. Exp. Cell Res. 317, 1134–1146 (2011)

    Article  PubMed  CAS  Google Scholar 

  40. C. Bolin, K. Tawara, C. Sutherland, J. Redshaw, P. Aranda, J. Moselhy, R. Anderson, C.L. Jorcyk, Oncostatin m promotes mammary tumor metastasis to bone and osteolytic bone degradation. Genes Cancer 3, 117–130 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of China (81172017) and the National Basic Research Program of China (973 Program, 2011CB707906).

Conflict of interest

There is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Additional information

Shaoheng Wan and Yuehong Liu these authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, S., Liu, Y., Weng, Y. et al. BMP9 regulates cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells. Cell Oncol. 37, 363–375 (2014). https://doi.org/10.1007/s13402-014-0197-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0197-1

Keywords

Navigation