Skip to main content

Advertisement

Log in

Modification of biomass-derived biochar: A practical approach towards development of sustainable CO2 adsorbent

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The persistent increase in the atmospheric concentration of carbon dioxide (CO2), the primary anthropogenic greenhouse gas contributing to global warming, makes research directed towards carbon capture and storage (CCS) imperative. In the past few years, among the available adsorbents, biochar has drawn significant interest as a promising carbon-based material for low-temperature CO2 capture from flue/fuel gas (such as biogas or gasification-derived syngas) owing to its environmentally friendly nature, cost-effective and facile preparation method, and sustainable adsorption performance. This work provides a review of recent studies on the development of biochar from biomass feedstocks and its subsequent modification through various approaches, including physical, chemical and physicochemical activations for post-combustion CO2 capture. An overview of the factors, including pyrolysis temperature, heating rate and time, and different modification methods, affecting the physicochemical attributes of biochar such as surface area, microporosity, surface properties and functional groups is presented. Biochar with a large micropore volume, a narrow microporosity (0.3–0.8 nm) and basic surface characteristics would be effective in adsorbing CO2 molecules. In this regard, physical modification of biochar is closely related to pore formation, whereas chemical modification emphasizes the creation of oxygen and nitrogen-containing functional groups; hence, they contribute to the enhanced CO2 capture through porosity development and surface chemistry alteration, respectively. Biochar has presented a strong selectivity towards CO2 compared to other gasses and has revealed a sustainable performance in multi-cycles of CO2 adsorption–desorption; these are crucial features to ensure the large-scale application of biochar for CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

copyright of RSC license (CC-BY 4.0)

Similar content being viewed by others

References

  1. Bose BK (2010) Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Ind Electron Mag 4:6–17. https://doi.org/10.1109/MIE.2010.935860

    Article  Google Scholar 

  2. Vaz S, Paula A, De SR, Eduardo B, Baeta L (2022) Technologies for carbon dioxide capture : A review applied to energy sectors. Clean Eng Technol 8:100456. https://doi.org/10.1016/j.clet.2022.100456

    Article  Google Scholar 

  3. (1997) Kyoto Protocol. https://unfccc.int/kyoto_protocol. 13/03/2022. Accessed 13 March 2022.

  4. (2015) Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-. 13/03/2022. Accessed 13 March 2022.

  5. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  6. Beiyuan J, Awad YM, Beckers F, Tsang DCW, Ok YS, Rinklebe J (2017) Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178:110–118. https://doi.org/10.1016/j.chemosphere.2017.03.022

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Yaumi AL, Bakar MZA, Hameed BH (2017) Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy 124:461–480. https://doi.org/10.1016/j.energy.2017.02.053

    Article  CAS  Google Scholar 

  8. Lee SY, Park SJ (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11. https://doi.org/10.1016/j.jiec.2014.09.001

    Article  CAS  Google Scholar 

  9. Creamer AE, Gao B (2016) Carbon-based adsorbents for postcombustion CO2 capture: A critical review. Environ Sci Technol 50:7276–7289. https://doi.org/10.1021/acs.est.6b00627

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Hwang KJ, Choi WS, Jung SH, Kwon YJ, Hong S, Choi C, Lee JW, Shim WG (2018) Synthesis of zeolitic material from basalt rock and its adsorption properties for carbon dioxide. RSC Adv 8:9524–9529. https://doi.org/10.1039/c8ra00788h

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Ibrahim GH, Al-Meshragi AM (2020) Experimental study of adsorption on activated carbon for CO2 capture. In: L. A. Frazão, A. M. Silva-Olaya & JCS (ed) CO2 Sequestration. IntechOpen, pp 1–20

  12. Wang J, Huang H, Wang M, Yao L, Qiao W, Long D, Ling L (2015) Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature. Ind Eng Chem Res 54:5319–5327. https://doi.org/10.1021/acs.iecr.5b01060

    Article  CAS  Google Scholar 

  13. Songolzadeh M, Soleimani M, Takht Ravanchi M, Songolzadeh R (2014) Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions. Sci World J 2014:828131. https://doi.org/10.1155/2014/828131

    Article  CAS  Google Scholar 

  14. Shao J, Zhang J, Zhang X, Feng Y, Zhang H, Zhang S, Chen H (2018) Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation. Fuel 224:138–146. https://doi.org/10.1016/j.fuel.2018.03.064

    Article  CAS  Google Scholar 

  15. Pang S (2019) Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol Adv 37:589–597. https://doi.org/10.1016/j.biotechadv.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  16. Lin Y, Ma X, Peng X, Yu Z, Fang S, Lin Y, Fan Y (2016) Combustion, pyrolysis and char CO2-gasification characteristics of hydrothermal carbonization solid fuel from municipal solid wastes. Fuel 181:905–915. https://doi.org/10.1016/j.fuel.2016.05.031

    Article  CAS  Google Scholar 

  17. Papageorgiou A, Azzi ES, Enell A, Sundberg C (2021) Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts. Sci Total Environ 776:145953. https://doi.org/10.1016/j.scitotenv.2021.145953

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Han T (2020) Properties of biochar from wood and textile. IOP Conf Ser Earth Environ Sci 546:042060. https://doi.org/10.1088/1755-1315/546/4/042060

    Article  Google Scholar 

  19. Manyà JJ, González B, Azuara M, Arner G (2018) Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem Eng J 345:631–639. https://doi.org/10.1016/j.cej.2018.01.092

    Article  CAS  Google Scholar 

  20. Zubbri NA, Mohamed AR, Kamiuchi N, Mohammadi M (2020) Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environ Sci Pollut Res 27:11809–11829. https://doi.org/10.1007/s11356-020-07734-3

    Article  CAS  Google Scholar 

  21. Zhang X, Zhang S, Yang H, Shao J, Chen Y, Feng Y, Wang X, Chen H (2015) Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy 91:903–910. https://doi.org/10.1016/j.energy.2015.08.028

    Article  CAS  Google Scholar 

  22. Zhang J, Huang B, Chen L, Li Y, Li W, Luo Z (2018) Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chem Speciat Bioavailab 30:57–67. https://doi.org/10.1080/09542299.2018.1487774

    Article  CAS  Google Scholar 

  23. Rehman A, Nawaz S, Alghamdi HA, Alrumman S, Yan W, Nawaz MZ (2020) Effects of manure-based biochar on uptake of nutrients and water holding capacity of different types of soils. Case Stud Chem Environ Eng 2:100036. https://doi.org/10.1016/j.cscee.2020.100036

    Article  Google Scholar 

  24. Bong CPC, Lim LY, Lee CT, Ong PY, Klemeš JJ, Li C, Gao Y (2020) Lignocellulosic biomass and food waste for biochar production and application: A review. Chem Eng Trans 81:427–432. https://doi.org/10.3303/CET2081072

    Article  Google Scholar 

  25. Igalavithana AD, Choi SW, Dissanayake PD et al (2020) Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. J Hazard Mater 391:121147. https://doi.org/10.1016/j.jhazmat.2019.121147

    Article  CAS  PubMed  Google Scholar 

  26. Yue Y, Cui L, Lin Q, Li G, Zhao X (2017) Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 173:551–556. https://doi.org/10.1016/j.chemosphere.2017.01.096

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Racek J, Sevcik J, Chorazy T, Kucerik J, Hlavinek P (2020) Biochar – Recovery material from pyrolysis of sewage sludge: A review. Waste and Biomass Valorization 11:3677–3709. https://doi.org/10.1007/s12649-019-00679-w

    Article  CAS  Google Scholar 

  28. Huang YF, Te SH, Te CP, Lo SL (2016) Co-torrefaction of sewage sludge and Leucaena by using microwave heating. Energy 116:1–7. https://doi.org/10.1016/j.energy.2016.09.102

    Article  CAS  Google Scholar 

  29. Islam MS, Kwak JH, Nzediegwu C et al (2021) Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environ Pollut 281:117094. https://doi.org/10.1016/j.envpol.2021.117094

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Li X, Liu G, He Y, Chen C, Liu X, Li G, Gu Y, Zhao Y (2019) Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: Adsorption properties and mechanisms. Environ Sci Process Impacts 21:584–592. https://doi.org/10.1039/c8em00457a

    Article  CAS  PubMed  Google Scholar 

  31. Deng Y, Li X, Ni F, Liu Q, Yang Y, Wang M, Ao T, Chen W (2021) Synthesis of magnesium modified biochar for removing copper, lead and cadmium in single and binary systems from aqueous solutions: Adsorption mechanism. Water (Switzerland) 13:599. https://doi.org/10.3390/w13050599

    Article  CAS  Google Scholar 

  32. Liang M, Lu L, He H, Li J, Zhu Z, Zhu Y (2021) Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustain 13:1–18. https://doi.org/10.3390/su132414041

    Article  CAS  Google Scholar 

  33. Dai Y, Wang W, Lu L, Yan L, Yu D (2020) Utilization of biochar for the removal of nitrogen and phosphorus. J Clean Prod 257:120573. https://doi.org/10.1016/j.jclepro.2020.120573

    Article  CAS  Google Scholar 

  34. Anthonysamy SI, Lahijani P, Mohammadi M, Mohamed AR (2021) Alkali-modified biochar as a sustainable adsorbent for the low-temperature uptake of nitric oxide. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03617-3

    Article  Google Scholar 

  35. Azwan A, Rahman A, Alias AB, Jaffar NN, Amir MA, Ghani WAWAK (2019) Adsorption of hydrogen sulphide by commercialized Rice Husk Biochar (RHB) & Hydrogel Biochar Composite (RH-HBC). Int J Recent Technol Eng 8:6864–6870. https://doi.org/10.35940/ijrte.d5207.118419

    Article  Google Scholar 

  36. Liu WJ, Jiang H, Yu HQ (2019) Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci 12:1751–1779. https://doi.org/10.1039/C9EE00206E

    Article  CAS  Google Scholar 

  37. Lee J, Kim KH, Kwon EE (2017) Biochar as a Catalyst. Renew Sustain Energy Rev 77:70–79. https://doi.org/10.1016/j.rser.2017.04.002

    Article  CAS  Google Scholar 

  38. Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2:796–854. https://doi.org/10.1002/cssc.200900036

    Article  CAS  PubMed  Google Scholar 

  39. Prauchner MJ, da Cunha Oliveira S, Rodríguez-Reinoso F (2020) Tailoring low-cost granular activated carbons intended for CO2 adsorption. Front Chem 8:1–16. https://doi.org/10.3389/fchem.2020.581133

    Article  CAS  Google Scholar 

  40. Jo K, Baek Y, Lee C, Yoon J (2019) Effect of hydrophilicity of activated carbon electrodes on desalination performance in membrane capacitive deionization. Appl Sci 9:5055. https://doi.org/10.3390/app9235055

    Article  CAS  Google Scholar 

  41. Abd AA, Naji SZ, Hashim AS, Othman MR (2020) Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. J Environ Chem Eng 8:104142. https://doi.org/10.1016/j.jece.2020.104142

    Article  CAS  Google Scholar 

  42. Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998. https://doi.org/10.1021/ja0570032

    Article  CAS  PubMed  Google Scholar 

  43. Yuan Z, Eden MR, Gani R (2016) Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Ind Eng Chem Res 55:3383–3419. https://doi.org/10.1021/acs.iecr.5b03277

    Article  CAS  Google Scholar 

  44. Sun H, Wu C, Shen B, Zhang X, Zhang Y, Huang J (2018) Progress in the development and application of CaO-based adsorbents for CO2 capture—a review. Mater Today Sustain 1–2:1–27. https://doi.org/10.1016/j.mtsust.2018.08.001

    Article  Google Scholar 

  45. Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater 338:102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resour Conserv Recycl 118:13–26. https://doi.org/10.1016/j.resconrec.2016.11.016

    Article  Google Scholar 

  47. Shafawi AN, Mohamed AR, Lahijani P, Mohammadi M (2021) Recent advances in developing engineered biochar for CO2 capture : An insight into the biochar modification approaches. J Environ Chem Eng 9:106869. https://doi.org/10.1016/j.jece.2021.106869

    Article  CAS  Google Scholar 

  48. Dulanja P, You S, Deshani A et al (2020) Biochar-based adsorbents for carbon dioxide capture : A critical review. Renew Sustain Energy Rev 119:109582. https://doi.org/10.1016/j.rser.2019.109582

    Article  CAS  Google Scholar 

  49. Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, Jiang S, Li H, Huang H (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763:144204. https://doi.org/10.1016/j.scitotenv.2020.144204

    Article  CAS  PubMed  ADS  Google Scholar 

  50. US Department of Energy (2015) Carbon dioxide capture for natural gas and industrial applications. Chapter 4: Advancing clean electric power technologies. https://www.energy.gov/sites/default/files/2015/12/f27/QTR2015-4D-Carbon-Dioxide-Capture-for-Natural-Gas-and-Industrial-Applications.pdf. Accessed 22 June 2022

  51. United States Department of Energy (2017) Carbon capture opportunities for natural gas fired power systems. Washington DC, USA. https://www.energy.gov/sites/prod/files/2017/01/f34/Carbon%20Capture%20Opportunities%20for%20Natural%20Gas%20Fired%20Power%20Systems_0.pdf. Accessed 22 June 2022

  52. Bains P, Psarras P, Wilcox J (2017) CO2 capture from the industry sector. Prog Energy Combust Sci 63:146–172. https://doi.org/10.1016/j.pecs.2017.07.001

    Article  Google Scholar 

  53. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann JM, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62. https://doi.org/10.1016/j.applthermaleng.2009.05.005

    Article  CAS  Google Scholar 

  54. Carpenter SM, Long HA (2017) 13-Integration of carbon capture in IGCC systems. In: Wang T, Stiegel G (eds) Integrated Gasification Combined Cycle (IGCC) Technologies. Woodhead Publishing, pp 445–463

    Chapter  Google Scholar 

  55. Blomen E, Hendriks C, Neele F (2009) Capture technologies: Improvements and promising developments. Energy Procedia 1:1505–1512. https://doi.org/10.1016/j.egypro.2009.01.197

    Article  CAS  Google Scholar 

  56. Spigarelli BP, Kawatra SK (2013) Opportunities and challenges in carbon dioxide capture. J CO2 Util 1:69–87. https://doi.org/10.1016/j.jcou.2013.03.002

    Article  CAS  Google Scholar 

  57. Padurean A, Cormos CC, Agachi PS (2012) Pre-combustion carbon dioxide capture by gas–liquid absorption for integrated gasification combined cycle power plants. Int J Greenh Gas Control 7:1–11. https://doi.org/10.1016/j.ijggc.2011.12.007

    Article  CAS  Google Scholar 

  58. Weiss H (1988) Rectisol wash for purification of partial oxidation gases. Gas Sep Purif 2:171–176. https://doi.org/10.1016/0950-4214(88)80002-1

    Article  Google Scholar 

  59. Osman AI, Hefny M, Abdel Maksoud MIA, Elgarahy AM, Rooney DW (2021) Recent advances in carbon capture storage and utilisation technologies: A review. Environ Chem Lett 19:797–849. https://doi.org/10.1007/s10311-020-01133-3

    Article  CAS  Google Scholar 

  60. Chen S, Yu R, Soomro A, Xiang W (2019) Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture. Energy 175:445–455. https://doi.org/10.1016/j.energy.2019.03.090

    Article  CAS  Google Scholar 

  61. Pandey, S. Gupta S, Tomar, A. Kumar, A (2010) Post combustion carbon capture technology. Natl Conf Eco Friendly Manuf Sustain Dev. GLA University Mathura, Paper No. 56

  62. Moioli S, Nagy T, Langé S, Pellegrini LA, Mizsey P (2017) Simulation model evaluation of CO2 capture by aqueous MEA scrubbing for heat requirement analyses. Energy Procedia 114:1558–1566. https://doi.org/10.1016/j.egypro.2017.03.1286

    Article  CAS  Google Scholar 

  63. Makertihartha IGBN, Dharmawijaya PT, Zunita M, Wenten IG (2017) Post combustion CO2 capture using zeolite membrane. AIP Conf Proc 1818https://doi.org/10.1063/1.4979941

  64. Gonzalez-Garza D, Rivera-Tinoco R, Bouallou C (2009) Comparison of ammonia, monoethanolamine, diethanolamine and methyldiethanolamine solvents to reduce CO2 greenhouse gas emissions. Chem Eng Trans 18:279–284. https://doi.org/10.3303/CET0918044

    Article  Google Scholar 

  65. Valluri S, Kawatra SK (2021) Use of frothers to improve the absorption efficiency of dilute sodium carbonate slurry for post combustion CO2 capture. Fuel Process Technol 212:106620. https://doi.org/10.1016/j.fuproc.2020.106620

    Article  CAS  Google Scholar 

  66. Al-Sudani F (2020) Absorption of carbon dioxide into aqueous ammonia solution using blended promoters (MEA, MEA+PZ, PZ+ArgK, MEA+ArgK). Eng Technol J 38:1359–1372. https://doi.org/10.30684/etj.v38i9a.876

    Article  Google Scholar 

  67. Huang HP, Shi Y, Li W, Chang SG (2001) Dual alkali approaches for the capture and separation of CO2. Energy Fuels 15:263–268. https://doi.org/10.1021/ef0002400

    Article  CAS  Google Scholar 

  68. Knuutila H, Svendsen HF, Anttila M (2009) CO2 capture from coal-fired power plants based on sodium carbonate slurry; a systems feasibility and sensitivity study. Int J Greenh Gas Control 3:143–151. https://doi.org/10.1016/j.ijggc.2008.06.006

    Article  CAS  Google Scholar 

  69. Zhao R, Zhao L, Wang S, Deng S, Li H, Yu Z (2018) Solar-assisted pressure-temperature swing adsorption for CO2 capture: Effect of adsorbent materials. Sol Energy Mater Sol Cells 185:494–504. https://doi.org/10.1016/j.solmat.2018.06.004

    Article  CAS  Google Scholar 

  70. Ammendola P, Raganati F, Chirone R, Miccio F (2020) Fixed bed adsorption as affected by thermodynamics and kinetics: Yellow tuff for CO2 capture. Powder Technol 373:446–458. https://doi.org/10.1016/j.powtec.2020.06.075

    Article  CAS  Google Scholar 

  71. Kishibayev KK, Serafin J, Tokpayev RR, Khavaza TN, Atchabarova AA, Abduakhytova DA, Ibraimov ZT, Sreńscek-Nazzal J (2021) Physical and chemical properties of activated carbon synthesized from plant wastes and shungite for CO2 capture. J Environ Chem Eng 9:106798. https://doi.org/10.1016/j.jece.2021.106798

    Article  CAS  Google Scholar 

  72. Serafin J, Sre´nscek-Nazzal J, Kami´nska A, Paszkiewicz O, Michalkiewicz B (2022) Management of surgical mask waste to activated carbons for CO2 capture. J CO2 Util 59:101970. https://doi.org/10.1016/j.jcou.2022.101970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Voss C (2005) Applications of pressure swing adsorption technology. Adsorption 11:527–529. https://doi.org/10.1007/s10450-005-5979-3

    Article  Google Scholar 

  74. Raganati F, Chirone R, Ammendola P (2020) CO2 capture by temperature swing adsorption: Working capacity as affected by temperature and CO2 Partial pressure. Ind Eng Chem Res 59:3593–3605. https://doi.org/10.1021/acs.iecr.9b04901

    Article  CAS  Google Scholar 

  75. Majchrzak-Kucęba I, Sołtysik M (2020) The potential of biocarbon as CO2 adsorbent in VPSA unit. J Therm Anal Calorim 142:267–273. https://doi.org/10.1007/s10973-020-09858-7

    Article  CAS  Google Scholar 

  76. Dhoke C, Zaabout A, Cloete S, Amini S (2021) Review on reactor configurations for adsorption-based CO2 capture. Ind Eng Chem Res 60:3779–3798. https://doi.org/10.1021/acs.iecr.0c04547

    Article  CAS  Google Scholar 

  77. Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: An overview. Chem Eng Res Des 89:1446–1460. https://doi.org/10.1016/j.cherd.2011.01.028

    Article  CAS  Google Scholar 

  78. Lei L, Bai L, Lindbråthen A, Pan F, Zhang X, He X (2020) Carbon membranes for CO2 removal: Status and perspectives from materials to processes. Chem Eng J 401:126084. https://doi.org/10.1016/j.cej.2020.126084

    Article  CAS  Google Scholar 

  79. Wang Y, Zhao L, Otto A, Robinius M, Stolten D (2017) A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 114:650–665. https://doi.org/10.1016/j.egypro.2017.03.1209

    Article  CAS  Google Scholar 

  80. Karimi M, Shirzad M, Silva JAC, Rodrigues AE (2022) Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. J CO2 Util 57:. https://doi.org/10.1016/j.jcou.2022.101890

  81. Lai JY, Ngu LH (2021) A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenh Gas Sci Technol 0:1–41. https://doi.org/10.1002/ghg.2112

    Article  CAS  Google Scholar 

  82. Ullah R, Salah AH, Saad M, Aparicio S, Atilhan M (2018) Adsorption equilibrium studies of CO2, CH4 and N2on various modified zeolites at high pressures up to 200 bars. Microporous Mesoporous Mater 262:49–58. https://doi.org/10.1016/j.micromeso.2017.11.022

    Article  CAS  Google Scholar 

  83. Bae JS, Bhatia SK (2006) High-pressure adsorption of methane and carbon dioxide on coal. Energy Fuels 20:2599–2607. https://doi.org/10.1021/ef060318y

    Article  CAS  Google Scholar 

  84. Ao W, Fu J, Mao X et al (2018) Microwave assisted preparation of activated carbon from biomass: A review. Renew Sustain Energy Rev 92:958–979. https://doi.org/10.1016/j.rser.2018.04.051

    Article  CAS  Google Scholar 

  85. Madzaki H, Ghani WAWAK, Rebitanim NZ, Alias AB (2016) Carbon Dioxide Adsorption on Sawdust Biochar. Procedia Eng 148:718–725. https://doi.org/10.1016/j.proeng.2016.06.591

    Article  CAS  Google Scholar 

  86. Gargiulo V, Gomis-Berenguer A, Giudicianni P, Ania CO, Ragucci R, Alfè M (2018) Assessing the potential of biochars prepared by steam-assisted slow pyrolysis for CO2 adsorption and separation. Energy Fuels 32:10218–10227. https://doi.org/10.1021/acs.energyfuels.8b01058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zubbri NA, Mohamed AR, Lahijani P, Mohammadi M (2021) Low temperature CO2 capture on biomass-derived KOH-activated hydrochar established through hydrothermal carbonization with water-soaking pre-treatment. J Environ Chem Eng 9:105074. https://doi.org/10.1016/j.jece.2021.105074

    Article  CAS  Google Scholar 

  88. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279. https://doi.org/10.1038/46248

    Article  CAS  ADS  Google Scholar 

  89. Abdi J, Hadavimoghaddam F, Hadipoor M, Hemmati-Sarapardeh A (2021) Modeling of CO2 adsorption capacity by porous metal organic frameworks using advanced decision tree-based models. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-04168-w

    Article  CAS  Google Scholar 

  90. Williams JL, Piatrik M, Choi S-K, Stannett V (1977) Postdecrystallization rates of grafted fibers and their effect on fiber elasticity. I. Effect of zinc chloride concentration. J Appl Polym Sci 21:1377–1381. https://doi.org/10.1002/app.1977.070210519

    Article  CAS  Google Scholar 

  91. Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954–959. https://doi.org/10.1038/ncomms1956

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Mustafa J, Farhan M, Hussain M (2016) CO2 separation from flue gases using different types of membranes. J Membr Sci Technol 6:153. https://doi.org/10.4172/2155-9589.1000153

    Article  CAS  Google Scholar 

  93. Shin DW, Hyun SH, Cho CH, Han MH (2005) Synthesis and CO2/N2 gas permeation characteristics of ZSM-5 zeolite membranes. Microporous Mesoporous Mater 85:313–323. https://doi.org/10.1016/j.micromeso.2005.06.035

    Article  CAS  Google Scholar 

  94. Brinkmann T, Lillepärg J, Notzke H, Pohlmann J, Shishatskiy S, Wind J, Wolff T (2017) Development of CO2 selective poly(ethylene oxide)-based membranes: From laboratory to pilot plant scale. Engineering 3:485–493. https://doi.org/10.1016/J.ENG.2017.04.004

    Article  CAS  Google Scholar 

  95. Papari S, Hawboldt K, Helleur R (2015) Pyrolysis: A theoretical and experimental study on the conversion of softwood sawmill residue to biooil. Ind Eng Chem Res 54:605–611. https://doi.org/10.1021/ie5039456

    Article  CAS  Google Scholar 

  96. Adelawon BO, Latinwo GK, Eboibi BE, Agbede OO, Agarry SE (2021) Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, box-benhken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy. Chem Eng Commun 0:1–31. https://doi.org/10.1080/00986445.2021.1957851

    Article  CAS  Google Scholar 

  97. Mazlan MAF, Uemura Y, Osman NB, Yusup S (2015) Characterizations of bio-char from fast pyrolysis of Meranti wood sawdust. J Phys Conf Ser 622:012054. https://doi.org/10.1088/1742-6596/622/1/012054

    Article  CAS  Google Scholar 

  98. Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79. https://doi.org/10.1016/j.soilbio.2011.11.019

    Article  CAS  Google Scholar 

  99. Brownsort P (2009) Biomass pyrolysis processes: Performance parameters and their influence on biochar system benefits. Dissertation, University of Edinburgh

  100. Huang YF, Te CP, Shih CH, Lo SL, Sun L, Zhong Y, Qiu C (2015) Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75–82. https://doi.org/10.1016/j.energy.2015.02.026

    Article  CAS  Google Scholar 

  101. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: A review. J Clean Prod 227:1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282

    Article  CAS  Google Scholar 

  102. Nunoura T, Wade SR, Bourke JP, Antal MJ (2006) Studies of the Flash Carbonization Process. 1. Propagation of the Flaming Pyrolysis Reaction and Performance of a Catalytic Afterburner. Ind Eng Chem Res 45:585–599. https://doi.org/10.1021/ie050854y

    Article  CAS  Google Scholar 

  103. Panwar NL, Pawar A, Salvi BL (2019) Comprehensive review on production and utilization of biochar. SN Appl Sci 1:1–19. https://doi.org/10.1007/s42452-019-0172-6

    Article  CAS  Google Scholar 

  104. Tian H, Hu Q, Wang J, Chen D, Yang Y, Bridgwater AV (2021) Kinetic study on the CO2 gasification of biochar derived from Miscanthus at different processing conditions. Energy 217:119341. https://doi.org/10.1016/j.energy.2020.119341

    Article  CAS  Google Scholar 

  105. Brewer CE, Schmidt-Rohr K, Satrio JA, RCB, (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396. https://doi.org/10.1002/ep.10378

    Article  CAS  Google Scholar 

  106. Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039

    Article  CAS  Google Scholar 

  107. Demirbas A (2009) Biorefineries: Current activities and future developments. Energy Convers Manag 50:2782–2801. https://doi.org/10.1016/j.enconman.2009.06.035

    Article  CAS  ADS  Google Scholar 

  108. Xie Y, Wang L, Li H, Westholm LJ, Carvalho L, Thorin E, Yu Z, Yu X, Skreiberg Ø (2022) A critical review on production, modification and utilization of biochar. J Anal Appl Pyrolysis 161:105405. https://doi.org/10.1016/j.jaap.2021.105405

    Article  CAS  Google Scholar 

  109. Wang Y, Qiu L, Zhu M, Sun G, Zhang T, Kang K (2019) Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of Eucommia ulmoides Oliver for the production of solid biofuel. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-38849-4

    Article  CAS  ADS  Google Scholar 

  110. Peng C, Zhai Y, Zhu Y, Wang T, Xu B, Wang T, Li C, Zeng G (2017) Investigation of the structure and reaction pathway of char obtained from sewage sludge with biomass wastes, using hydrothermal treatment. J Clean Prod 166:114–123. https://doi.org/10.1016/j.jclepro.2017.07.108

    Article  CAS  Google Scholar 

  111. Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 24:4738–4742. https://doi.org/10.1021/ef901273n

    Article  CAS  Google Scholar 

  112. Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization : Fate of inorganics. Biomass Bioenerg 49:86–94. https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  CAS  Google Scholar 

  113. Karthik V, Kumar PS, Vo DVN, Sindhu J, Sneka D, Subhashini B, Saravanan K, Jeyanthi J (2021) Hydrothermal production of algal biochar for environmental and fertilizer applications: A review. Environ Chem Lett 19:1025–1042. https://doi.org/10.1007/s10311-020-01139-x

    Article  CAS  Google Scholar 

  114. Zhang B, Heidari M, Regmi B, Salaudeen S, Arku P, Thimmannagari M, Dutta A (2018) Hydrothermal carbonization of fruit wastes: A promising technique for generating hydrochar. Energies 11:1–14. https://doi.org/10.3390/en11082022

    Article  CAS  Google Scholar 

  115. Manyà JJ, García-Morcate D, González B (2020) Adsorption performance of physically activated biochars for postcombustion CO2 capture from dry and humid flue gas. Appl Sci 10:1–17. https://doi.org/10.3390/app10010376

    Article  CAS  Google Scholar 

  116. Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179. https://doi.org/10.1016/j.cej.2014.03.105

    Article  CAS  Google Scholar 

  117. Lahijani P, Mohammadi M, Mohamed AR (2018) Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition. J CO2 Util 26:281–293. https://doi.org/10.1016/j.jcou.2018.05.018

    Article  CAS  Google Scholar 

  118. Mohamed Noor N, Shariff A, Abdullah N, Mohamad Aziz NS (2019) Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malaysian J Fundam Appl Sci 15:153–158. https://doi.org/10.11113/mjfas.v15n2.1015

    Article  Google Scholar 

  119. Demirbaş A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482. https://doi.org/10.1080/00908310252889979

    Article  Google Scholar 

  120. Shukla N, Sahoo D, Remya N (2019) Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. J Clean Prod 235:1073–1079. https://doi.org/10.1016/j.jclepro.2019.07.042

    Article  CAS  Google Scholar 

  121. Ng WC, You S, Ling R, Gin KYH, Dai Y, Wang CH (2017) Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis. Energy 139:732–742. https://doi.org/10.1016/j.energy.2017.07.165

    Article  CAS  Google Scholar 

  122. Mustaza MNF, Mizan MN, Yoshida H, Izhar S (2021) Torréfaction of mangrove wood by introducing superheated steam for biochar production. IOP Conf Ser Earth Environ Sci 765:012027. https://doi.org/10.1088/1755-1315/765/1/012027

    Article  Google Scholar 

  123. Roy P, Dutta A, Gallant J (2018) Hydrothermal carbonization of peat moss and herbaceous biomass (miscanthus): A potential route for bioenergy. Energies 11:2794. https://doi.org/10.3390/en11102794

    Article  CAS  Google Scholar 

  124. Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621. https://doi.org/10.5194/bg-11-6613-2014

    Article  ADS  Google Scholar 

  125. Chiang YC, Juang RS (2017) Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. J Taiwan Inst Chem Eng 71:214–234. https://doi.org/10.1016/j.jtice.2016.12.014

    Article  CAS  Google Scholar 

  126. Cetin E, Moghtaderi B, Gupta R, Wall TF (2004) Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83:2139–2150. https://doi.org/10.1016/j.fuel.2004.05.008

    Article  CAS  Google Scholar 

  127. Chen D, Li Y, Cen K, Luo M, Li H, Lu B (2016) Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. Bioresour Technol 218:780–788. https://doi.org/10.1016/j.biortech.2016.07.049

    Article  CAS  PubMed  Google Scholar 

  128. Bagreev A, Bandosz TJ, Locke DC (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39:1971–1979. https://doi.org/10.1016/S0008-622328012900026-4

    Article  CAS  Google Scholar 

  129. IUPAC (1972) Manual of symbols and terminology, Appendix 2, Part. 1, colloid and surface chemistry. Pure Appl Chem 31:578–638

    Google Scholar 

  130. Presser V, McDonough J, Yeon SH, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 4:3059–3066. https://doi.org/10.1039/c1ee01176f

    Article  CAS  Google Scholar 

  131. Deng S, Wei H, Chen T, Wang B, Huang J, Yu G (2014) Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem Eng J 253:46–54. https://doi.org/10.1016/j.cej.2014.04.115

    Article  CAS  Google Scholar 

  132. Khandaker T, Hossain MS, Dhar PK, Rahman MS, Hossain MA, Ahmed MB (2020) Efficacies of carbon-based adsorbents for carbon dioxide capture. Processes 8:1–32. https://doi.org/10.3390/PR8060654

    Article  Google Scholar 

  133. Gao X, Yang S, Hu L, Cai S, Wu L, Kawi S (2022) Carbonaceous materials as adsorbents for CO2 capture: Synthesis and modification. Carbon Capture Sci Technol 3:100039. https://doi.org/10.1016/j.ccst.2022.100039

    Article  CAS  Google Scholar 

  134. Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000. https://doi.org/10.2134/jeq2011.0070

    Article  CAS  PubMed  Google Scholar 

  135. Zhang H, Chen C, Gray EM, Boyd SE (2017) Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenerg 105:136–146. https://doi.org/10.1016/j.biombioe.2017.06.024

    Article  CAS  Google Scholar 

  136. Chatterjee R, Sajjadi B, Chen WY, Mattern DL, Hammer N, Raman V, Dorris A (2020) Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Front Energy Res 8:1–18. https://doi.org/10.3389/fenrg.2020.00085

    Article  Google Scholar 

  137. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenerg 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  CAS  Google Scholar 

  138. Zhang P, Sun H, Yu L, Sun T (2013) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J Hazard Mater 244–245:217–224. https://doi.org/10.1016/j.jhazmat.2012.11.046

    Article  CAS  PubMed  Google Scholar 

  139. Fu P, Hu S, Sun L, Xiang J, Yang T, Zhang A, Zhang J (2009) Structural evolution of maize stalk/char particles during pyrolysis. Bioresour Technol 100:4877–4883. https://doi.org/10.1016/j.biortech.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  140. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon(biochar). Environ Sci Technol 44:1247–1253. https://doi.org/10.1021/es9031419

    Article  CAS  PubMed  ADS  Google Scholar 

  141. Lua AC, Lau FY, Guo J (2006) Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons. J Anal Appl Pyrolysis 76:96–102. https://doi.org/10.1016/j.jaap.2005.08.001

    Article  CAS  Google Scholar 

  142. Elnour AY, Alghyamah AA, Shaikh HM, Poulose AM, Al-Zahrani SM, Anis A, Al-Wabel MI (2019) Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl Sci 9:7–9. https://doi.org/10.3390/app9061149

    Article  CAS  Google Scholar 

  143. Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 9:e113888. https://doi.org/10.1371/journal.pone.0113888

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  144. Selvarajoo A, Oochit D (2020) Effect of pyrolysis temperature on product yields of palm fibre and its biochar characteristics. Mater Sci Energy Technol 3:575–583. https://doi.org/10.1016/j.mset.2020.06.003

    Article  CAS  Google Scholar 

  145. Titiladunayo IF, McDonald AG, Fapetu OP (2012) Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste and Biomass Valorization 3:311–318. https://doi.org/10.1007/s12649-012-9118-6

    Article  CAS  Google Scholar 

  146. Mohd Hasan MH, Bachmann RT, Loh SK, Manroshan S, Ong SK (2019) Effect of pyrolysis temperature and time on properties of palm kernel shell-based biochar. IOP Conf Ser Mater Sci Eng 548:012020. https://doi.org/10.1088/1757-899X/548/1/012020

    Article  Google Scholar 

  147. Xu B, Argyle MD, Shi X, Goroncy AK, Rony AH, Tan G, Fan M (2020) Effects of mixture of CO2/CH4 as pyrolysis atmosphere on pine wood pyrolysis products. Renew Energy 162:1243–1254. https://doi.org/10.1016/j.renene.2020.08.069

    Article  CAS  Google Scholar 

  148. Parvez AM, Afzal MT, Victor Hebb TG, Schmid M (2020) Utilization of CO2 in thermochemical conversion of biomass for enhanced product properties: A review. J CO2 Util 40:101217. https://doi.org/10.1016/j.jcou.2020.101217

    Article  CAS  Google Scholar 

  149. Mellin P, Yu X, Yang W, Blasiak W (2015) Influence of reaction atmosphere (H2O, N2, H2, CO2, CO) on fluidized-bed fast pyrolysis of biomass using detailed tar vapor chemistry in computational fluid dynamics. Ind Eng Chem Res 54:8344–8355. https://doi.org/10.1021/acs.iecr.5b02164

    Article  CAS  Google Scholar 

  150. Promraksa A, Rakmak N (2020) Biochar production from palm oil mill residues and application of the biochar to adsorb carbon dioxide. Heliyon 6:e04019. https://doi.org/10.1016/j.heliyon.2020.e04019

    Article  PubMed  PubMed Central  Google Scholar 

  151. Fryda L, Visser R (2015) Biochar for soil improvement: Evaluation of biochar from gasification and slow pyrolysis. Agric 5:1076–1115. https://doi.org/10.3390/agriculture5041076

    Article  CAS  Google Scholar 

  152. Guizani C, Escudero Sanz FJ, Salvador S (2014) Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 116:310–320. https://doi.org/10.1016/j.fuel.2013.07.101

    Article  CAS  Google Scholar 

  153. Liu R, Liu G, Yousaf B, Abbas Q (2018) Operating conditions-induced changes in product yield and characteristics during thermal-conversion of peanut shell to biochar in relation to economic analysis. J Clean Prod 193:479–490. https://doi.org/10.1016/j.jclepro.2018.05.034

    Article  CAS  Google Scholar 

  154. Ertaş M, Hakki Alma M (2010) Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a fixed-bed reactor: Characterization of bio-oil and bio-char. J Anal Appl Pyrolysis 88:22–29. https://doi.org/10.1016/j.jaap.2010.02.006

    Article  CAS  Google Scholar 

  155. Igalavithana AD, Lee SE, Lee YH, Tsang DCW, Rinklebe J, Kwon EE, Ok YS (2017) Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174:593–603. https://doi.org/10.1016/j.chemosphere.2017.01.148

    Article  CAS  PubMed  ADS  Google Scholar 

  156. Zhao SX, Ta N, Wang XD (2017) Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10:1293. https://doi.org/10.3390/en10091293

    Article  CAS  Google Scholar 

  157. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. https://doi.org/10.1016/j.biortech.2011.11.084

    Article  CAS  PubMed  Google Scholar 

  158. Yang X, Kang K, Qiu L, Zhao L, Sun R (2020) Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renew Energy 146:1691–1699. https://doi.org/10.1016/j.renene.2019.07.148

    Article  CAS  Google Scholar 

  159. Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DCW, Hou D (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987. https://doi.org/10.1016/j.jclepro.2017.11.013

    Article  CAS  Google Scholar 

  160. Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  CAS  PubMed  Google Scholar 

  161. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  CAS  Google Scholar 

  162. Li H, Dong X, da Silva EB, de Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  CAS  PubMed  ADS  Google Scholar 

  163. Zhang J, Liu J, Liu R (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour Technol 176:288–291. https://doi.org/10.1016/j.biortech.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  164. Al-wabel MI, Al-omran A, El-naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from Conocarpus wastes. Bioresour Technol 131:374–379. https://doi.org/10.1016/j.biortech.2012.12.165

    Article  CAS  PubMed  Google Scholar 

  165. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018

    Article  CAS  PubMed  Google Scholar 

  166. Gaffar S, Dattamudi S, Baboukani AR, Chanda S, Novak JM, Watts DW, Wang C, Jayachandran K (2021) Physiochemical characterization of biochars from six feedstocks and their effects on the sorption of atrazine in an organic soil. Agronomy 11:716. https://doi.org/10.3390/agronomy11040716

    Article  CAS  Google Scholar 

  167. Hossain MK, Strezov Vladimir V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92:223–228. https://doi.org/10.1016/j.jenvman.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  168. Chen H, Guo Y, Du Y, Xu X, Su C, Zeng Z, Li L (2021) The synergistic effects of surface functional groups and pore sizes on CO2 adsorption by GCMC and DFT simulations. Chem Eng J 415:128824. https://doi.org/10.1016/j.cej.2021.128824

    Article  CAS  Google Scholar 

  169. Petrovic B, Gorbounov M, Masoudi Soltani S (2021) Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous Mesoporous Mater 312:110751. https://doi.org/10.1016/j.micromeso.2020.110751

    Article  CAS  Google Scholar 

  170. Boehm HP (1966) Chemical identification of surface groups. Adv Catal 16:179–274. https://doi.org/10.1016/S0360-0564(08)60354-5

    Article  CAS  Google Scholar 

  171. Montes-Morán MA, Suárez D, Menéndez JA, Fuente E (2004) On the nature of basic sites on carbon surfaces: An overview. Carbon 42:1219–1225. https://doi.org/10.1016/j.carbon.2004.01.023

    Article  CAS  Google Scholar 

  172. Biniak S, Świątkowski A, Pakuła M (2001) Electrochemical studies of phenomena at active carbon- electrolyte solution interfaces. In: Radovic LR (ed) Chemistry and physics of carbon: A series of advances. Marcel Dekker Inc, New York, pp 126–216

    Google Scholar 

  173. Shen W, Fan W (2013) Nitrogen-containing porous carbons: Synthesis and application. J Mater Chem A 1:999–1013. https://doi.org/10.1039/c2ta00028h

    Article  CAS  Google Scholar 

  174. Guo T, Ma N, Pan Y, Bedane AH, Xiao H, Eić M, Du Y (2018) Characteristics of CO2 adsorption on biochar derived from biomass pyrolysis in molten salt. Can J Chem Eng 96:2352–2360. https://doi.org/10.1002/cjce.23153

    Article  CAS  Google Scholar 

  175. Yaumi AL, Bakar MZA, Hameed BH (2018) Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed. Energy 155:46–55. https://doi.org/10.1016/j.energy.2018.04.183

    Article  CAS  Google Scholar 

  176. Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4:312–323. https://doi.org/10.1007/s12155-011-9133-7

    Article  Google Scholar 

  177. Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301. https://doi.org/10.1021/es903140c

    Article  CAS  PubMed  ADS  Google Scholar 

  178. Spokas KA (2010) Review of the stability of biochar in soils: Predictability of O: C molar ratios. Carbon Manag 1:289–303. https://doi.org/10.4155/cmt.10.32

    Article  CAS  Google Scholar 

  179. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. https://doi.org/10.1016/j.biortech.2012.03.022

    Article  CAS  PubMed  Google Scholar 

  180. Shen Y, Linville JL, Ignacio-de Leon PAA, Schoene RP, Urgun-Demirtas M (2016) Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. J Clean Prod 135:1054–1064. https://doi.org/10.1016/j.jclepro.2016.06.144

    Article  CAS  Google Scholar 

  181. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143. https://doi.org/10.1021/es8002684

    Article  CAS  PubMed  ADS  Google Scholar 

  182. Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. https://doi.org/10.1021/ie0207919

    Article  CAS  Google Scholar 

  183. Ok YS, Yang JE, Zhang YS, Kim SJ, Chung DY (2007) Heavy metal adsorption by a formulated zeolite-Portland cement mixture. J Hazard Mater 147:91–96. https://doi.org/10.1016/j.jhazmat.2006.12.046

    Article  CAS  PubMed  Google Scholar 

  184. Imam T, Capareda S (2012) Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J Anal Appl Pyrolysis 93:170–177. https://doi.org/10.1016/j.jaap.2011.11.010

    Article  CAS  Google Scholar 

  185. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72:243–248. https://doi.org/10.1016/j.jaap.2004.07.003

    Article  CAS  Google Scholar 

  186. Zhao Z, Wu Q, Nie T, Zhou W (2019) Quantitative evaluation of relationships between adsorption and partition of atrazine in biochar-amended soils with biochar characteristics. RSC Adv 9:4162–4171. https://doi.org/10.1039/C8RA08544G

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  187. Sun X, Shan R, Li X, Pan J, Liu X, Deng R, Song J (2017) Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9:1423–1435. https://doi.org/10.1111/gcbb.12435

    Article  CAS  Google Scholar 

  188. Kameyama K, Miyamoto T, Iwata Y (2019) The preliminary study of water-retention related properties of biochar produced from various feedstock at different pyrolysis temperatures. Materials (Basel) 12:1732. https://doi.org/10.3390/ma12111732

    Article  CAS  PubMed  ADS  Google Scholar 

  189. Bamdad H, Hawboldt K, MacQuarrie S, Papari S (2019) Application of biochar for acid gas removal: experimental and statistical analysis using CO2. Environ Sci Pollut Res 26:10902–10915. https://doi.org/10.1007/s11356-019-04509-3

    Article  CAS  Google Scholar 

  190. Anthonysamy SI, Lahijani P, Mohammadi M, Mohamed AR (2020) Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar. Korean J Chem Eng 37:130–140. https://doi.org/10.1007/s11814-019-0405-9

    Article  CAS  Google Scholar 

  191. Dubinin MM (1989) Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 27:457–467. https://doi.org/10.1016/0008-6223(89)90078-X

    Article  CAS  Google Scholar 

  192. Barrett EP, Joyner LG, Halenda PP (1951) The Determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  193. Mao J, Cao X, Chen N (2013) Characterization of biochars using advanced solid-state 13C nuclear magnetic resonance spectroscopy. In: Lee JW (ed) Advanced Biofuels and Bioproducts. Springer, New York, New York, pp 47–55

    Chapter  Google Scholar 

  194. Tangsathitkulchai C, Naksusuk S, Wongkoblap A, Phadungbut P (2021) Equilibrium and kinetics of CO2 adsorption by coconut shell activated carbon impregnated with sodium hydroxide. Processes 9:1–23. https://doi.org/10.3390/pr9020201

    Article  CAS  Google Scholar 

  195. Igalavithana AD, Choi SW, Shang J, Hanif A, Dissanayake PD, Tsang DCW, Kwon JH, Lee KB, Ok YS (2020) Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Sci Total Environ 739:139845. https://doi.org/10.1016/j.scitotenv.2020.139845

    Article  CAS  PubMed  ADS  Google Scholar 

  196. Shafeeyan MS, Wan Daud WMA, Houshmand A, Arami-Niya A (2012) The application of response surface methodology to optimize the amination of activated carbon for the preparation of carbon dioxide adsorbents. Fuel 94:465–472. https://doi.org/10.1016/j.fuel.2011.11.035

    Article  CAS  Google Scholar 

  197. Lim G, Lee KB, Ham HC (2016) Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: A Density Functional Theory approach. J Phys Chem C 120:8087–8095. https://doi.org/10.1021/acs.jpcc.5b12090

    Article  CAS  Google Scholar 

  198. Xing W, Liu C, Zhou Z, Zhou J, Wang G, Zhuo S, Xue Q (2014) Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res Lett 9:189

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  199. Liu Y, Wilcox J (2012) Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol 46:1940–1947. https://doi.org/10.1021/es204071g

    Article  CAS  PubMed  ADS  Google Scholar 

  200. Zhang X, Wu J, Yang H, Shao J, Wang X, Chen Y, Zhang S, Chen H (2016) Preparation of nitrogen-doped microporous modified biochar by high temperature CO2-NH3 treatment for CO2 adsorption: Effects of temperature. RSC Adv 6:98157–98166. https://doi.org/10.1039/c6ra23748g

    Article  CAS  ADS  Google Scholar 

  201. Liu WJ, Jiang H, Tian K, Ding YW, Yu HQ (2013) Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environ Sci Technol 47:9397–9403. https://doi.org/10.1021/es401286p

    Article  CAS  PubMed  ADS  Google Scholar 

  202. Chiang YC, Yeh CY, Weng CH (2019) Carbon dioxide adsorption on porous and functionalized activated carbon fibers. Appl Sci 9:1977. https://doi.org/10.3390/app9101977

    Article  CAS  Google Scholar 

  203. Fan X, Zhang L, Zhang G, Shu Z, Shi J (2013) Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 61:423–430. https://doi.org/10.1016/j.carbon.2013.05.026

    Article  CAS  Google Scholar 

  204. Zhang C, Song W, Sun G et al (2013) CO2 capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 27:4818–4823. https://doi.org/10.1021/ef400499k

    Article  CAS  Google Scholar 

  205. Songolzadeh M, Ravanchi MT, Soleimani M (2012) Carbon dioxide capture and storage : A general review on adsorbents. Int J Chem Mol Nucl Mater Metall Eng 6:900–907. https://doi.org/10.5281/zenodo.1076265

    Article  Google Scholar 

  206. Igalavithana AD, Mandal S, Niazi NK et al (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47:2275–2330. https://doi.org/10.1080/10643389.2017.1421844

    Article  CAS  Google Scholar 

  207. Sajjadi B, Chen WY, Egiebor NO (2019) A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng 35:735–776. https://doi.org/10.1515/revce-2017-0113

    Article  CAS  Google Scholar 

  208. Dalai AK, Azargohar R (2007) Production of activated carbon from biochar using chemical and physical activation: Mechanism and modeling. ACS Symp Ser 954:463–476. https://doi.org/10.1021/bk-2007-0954.ch029

    Article  CAS  Google Scholar 

  209. Hagemann N, Spokas K, Schmidt HP, Kägi R, Böhler MA, Bucheli TD (2018) Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs. Water (Switzerland) 10:1–19. https://doi.org/10.3390/w10020182

    Article  CAS  Google Scholar 

  210. Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 214:836–851. https://doi.org/10.1016/j.biortech.2016.05.057

    Article  CAS  PubMed  Google Scholar 

  211. Budinova T, Ekinci E, Yardim F, Grimm A, Björnbom E, Minkova V, Goranova M (2006) Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process Technol 87:899–905. https://doi.org/10.1016/j.fuproc.2006.06.005

    Article  CAS  Google Scholar 

  212. Mestre AS, Pires J, Nogueira JMF, Carvalho AP (2007) Activated carbons for the adsorption of ibuprofen. Carbon 45:1979–1988. https://doi.org/10.1016/j.carbon.2007.06.005

    Article  CAS  Google Scholar 

  213. Santos RM, Santos AO, Midori E, Nascimento JS, Lima ÁS, Freitas LS (2015) Pyrolysis of Mangaba seed : Production and characterization of bio-oil. Bioresour Technol 196:43–48. https://doi.org/10.1016/j.biortech.2015.07.060

    Article  CAS  PubMed  Google Scholar 

  214. Rajapaksha AU, Vithanage M, Ahmad M, Seo DC, Cho JS, Lee SE, Lee SS, Ok YS (2015) Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J Hazard Mater 290:43–50. https://doi.org/10.1016/j.jhazmat.2015.02.046

    Article  CAS  PubMed  Google Scholar 

  215. Rodríguez-Reinoso F, Molina-Sabio M, González MT (1995) The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33:15–23. https://doi.org/10.1016/0008-6223(94)00100-E

    Article  Google Scholar 

  216. Feng D, Zhang Y, Zhao Y, Sun S, Gao J (2018) Improvement and maintenance of biochar catalytic activity for in-situ biomass tar reforming during pyrolysis and H2O/CO2 gasification. Fuel Process Technol 172:106–114. https://doi.org/10.1016/j.fuproc.2017.12.011

    Article  CAS  Google Scholar 

  217. Lussier MG, Zhang Z, Miller DJ (1998) Characterizing rate inhibition in steam/hydrogen gasification via analysis of adsorbed hydrogen. Carbon 36:1361–1369. https://doi.org/10.1016/S0008-6223(98)00123-7

    Article  CAS  Google Scholar 

  218. Aworn A, Thiravetyan P, Nakbanpote W (2008) Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores. J Anal Appl Pyrolysis 82:279–285. https://doi.org/10.1016/j.jaap.2008.04.007

    Article  CAS  Google Scholar 

  219. Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andrésen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86:1627–1645. https://doi.org/10.1016/j.fuproc.2005.01.017

    Article  CAS  Google Scholar 

  220. Fan M (2004) Steam activation of chars produced from oat hulls and corn stover. Bioresour Technol 93:103–107. https://doi.org/10.1016/j.biortech.2003.08.016

    Article  CAS  PubMed  Google Scholar 

  221. Zhang YJ, Xing ZJ, Duan ZK, Li M, Wang Y (2014) Effects of steam activation on the pore structure and surface chemistry of activated aarbon derived from Bamboo waste. Appl Surf Sci 315:279–286. https://doi.org/10.1016/j.apsusc.2014.07.126

    Article  CAS  ADS  Google Scholar 

  222. Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chem-Ing-Tech 82:1059–1073. https://doi.org/10.1002/cite.201000064

    Article  CAS  Google Scholar 

  223. Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MRM (2018) Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. J Environ Chem Eng 6:4245–4252. https://doi.org/10.1016/j.jece.2018.06.030

    Article  CAS  Google Scholar 

  224. Sevilla M, Al-Jumialy ASM, Fuertes AB, Mokaya R (2018) Optimization of the pore structure of biomass-based carbons in relation to their use for CO2 capture under low- and high-pressure regimes regimes. ACS Appl Mater Interfaces 10:1623–1633. https://doi.org/10.1021/acsami.7b10433

    Article  CAS  PubMed  Google Scholar 

  225. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5:2411–2428. https://doi.org/10.1039/c6ta08742f

    Article  CAS  Google Scholar 

  226. Shahkarami S, Azargohar R, Dalai AK, Soltan J (2015) Breakthrough CO2 adsorption in bio-based activated carbons. J Environ Sci (China) 34:68–76. https://doi.org/10.1016/j.jes.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  227. Wu X, Yu Y, Qin Z, Zhang Z (2014) The advances of post-combustion CO2 capture with chemical solvents: review and guidelines. Energy Procedia 63:1339–1346. https://doi.org/10.1016/j.egypro.2014.11.143

    Article  CAS  Google Scholar 

  228. Creamer AE, Gao B, Wang S (2016) Carbon dioxide capture using various metal oxyhydroxide–biochar composites. Chem Eng J 283:826–832. https://doi.org/10.1016/j.cej.2015.08.037

    Article  CAS  Google Scholar 

  229. Mu J, Perlmutter DD (1982) Thermal decomposition of metal nitrates and their hydrates. Thermochim Acta 56:253–260. https://doi.org/10.1016/0040-6031(82)87033-0

    Article  CAS  Google Scholar 

  230. Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C (2020) Biomass ash stabilized Mgo adsorbents for CO2 Capture application. Fuel 259:116298. https://doi.org/10.1016/j.fuel.2019.116298

    Article  CAS  Google Scholar 

  231. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrolysis 89:143–151. https://doi.org/10.1016/j.jaap.2010.07.006

    Article  CAS  Google Scholar 

  232. Saha D, Kienbaum MJ (2019) Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review. Microporous Mesoporous Mater 287:29–55. https://doi.org/10.1016/j.micromeso.2019.05.051

    Article  CAS  Google Scholar 

  233. Xiong Z, Shihong Z, Haiping Y, Tao S, Yingquan C, Hanping C (2013) Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Res 6:1147–1153. https://doi.org/10.1007/s12155-013-9304-9

    Article  CAS  Google Scholar 

  234. Molavi H, Eskandari A, Shojaei A, Mousavi SA (2018) Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Microporous Mesoporous Mater 257:193–201. https://doi.org/10.1016/j.micromeso.2017.08.043

    Article  CAS  Google Scholar 

  235. Sarmah M, Baruah BP, Khare P (2013) A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA. Fuel Process Technol 106:490–497. https://doi.org/10.1016/j.fuproc.2012.09.017

    Article  CAS  Google Scholar 

  236. Nie L, Mu Y, Jin J, Chen J, Mi J (2018) Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chinese J Chem Eng 2303–2317https://doi.org/10.1016/j.cjche.2018.07.012

  237. Bandosz TJ, Seredych M, Rodríguez-Castellón E, Cheng Y, Daemen LL, Ramírez-Cuesta AJ (2016) Evidence for CO2 Reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions. Carbon 96:856–863. https://doi.org/10.1016/j.carbon.2015.10.007

    Article  CAS  Google Scholar 

  238. Xie W-H, Li H, Yang M, He L-N, Li H-R (2022) CO2 capture and utilization with solid waste. Green Chem Eng. https://doi.org/10.1016/j.gce.2022.01.002

    Article  Google Scholar 

  239. Haleem N, Khattak A, Jamal Y, Sajid M, Shahzad Z, Raza H (2022) Development of poly vinyl alcohol (PVA) based biochar nanofibers for carbon dioxide (CO2) adsorption. Renew Sustain Energy Rev 157:112019. https://doi.org/10.1016/j.rser.2021.112019

    Article  CAS  Google Scholar 

  240. Bamdad H, Hawboldt K, Macquarrie S (2018) Nitrogen functionalized biochar as a renewable adsorbent for efficient CO2 removal. Energy Fuels 32:11742–11748. https://doi.org/10.1021/acs.energyfuels.8b03056

    Article  CAS  Google Scholar 

  241. Liu SH, Huang YY (2018) Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J Clean Prod 175:354–360. https://doi.org/10.1016/j.jclepro.2017.12.076

    Article  CAS  Google Scholar 

  242. Ghani WAWAK, Rebitanim NZ, Salleh MAM, Alias AB (2015) Carbon Dioxide Adsorption on Coconut Shell Biochar. In: Dincer I, Colpan CO, Kizilkan O, Ezan MA (eds) Progress in Clean Energy, vol 1. Springer International Publishing, Switzerland, pp 683–693

    Chapter  Google Scholar 

  243. Tan YL, Islam A, Asif M, Hameed BH (2014) Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed. Energy 77:926–931. https://doi.org/10.1016/j.energy.2014.09.079

    Article  CAS  Google Scholar 

  244. Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicol Environ Saf 138:279–285. https://doi.org/10.1016/j.ecoenv.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  245. Shen F, Wang Y, Li L, Zhang K, Smith RL, Qi X (2018) Porous carbonaceous materials from hydrothermal carbonization and KOH activation of corn stover for highly efficient CO2 capture. Chem Eng Commun 205:423–431. https://doi.org/10.1080/00986445.2017.1367671

    Article  CAS  Google Scholar 

  246. Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806. https://doi.org/10.1021/am302077c

    Article  CAS  PubMed  Google Scholar 

  247. Huang GG, Liu YF, Wu XX, Cai JJ (2019) Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. Xinxing Tan Cailiao/New Carbon Mater 34:247–257. https://doi.org/10.1016/S1872-5805(19)60014-4

    Article  CAS  Google Scholar 

  248. Serafin J, Ouzzine M, Cruz OF, Sreńscek-Nazzal J, Campello Gómez I, Azar FZ, Rey Mafull CA, Hotza D, Rambo CR (2021) Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Manag 136:273–282. https://doi.org/10.1016/j.wasman.2021.10.025

    Article  CAS  PubMed  Google Scholar 

  249. Yue L, Xia Q, Wang L, Wang L, DaCosta H, Yang J, Hu X (2018) CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. J Colloid Interface Sci 511:259–267. https://doi.org/10.1016/j.jcis.2017.09.040

    Article  CAS  PubMed  ADS  Google Scholar 

  250. Hu J, Chen Y, Qian K, Yang Z, Yang H, Li Y, Chen H (2017) Evolution of char structure during mengdong coal pyrolysis: influence of temperature and K2CO3. Fuel Process Technol 159:178–186. https://doi.org/10.1016/j.fuproc.2017.01.042

    Article  CAS  Google Scholar 

  251. Zhao C, Chen X, Zhao C (2012) K2CO3/Al2O3 for capturing CO2 in flue gas from power plants. part 1: carbonation behaviors of K2CO3/Al2O3. Energy Fuels 26:1401–1405. https://doi.org/10.1021/ef200725z

    Article  CAS  Google Scholar 

  252. Park SJ, Jung WY (2002) Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. J Colloid Interface Sci 250:93–98. https://doi.org/10.1006/jcis.2002.8309

    Article  CAS  PubMed  ADS  Google Scholar 

  253. Goel C, Bhunia H, Bajpai PK (2015) Synthesis of nitrogen doped mesoporous carbons for carbon dioxide capture. RSC Adv 5:46568–46582. https://doi.org/10.1039/c5ra05684e

    Article  CAS  ADS  Google Scholar 

  254. Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif 7:241–245. https://doi.org/10.1016/0950-4214(93)80024-Q

    Article  CAS  Google Scholar 

  255. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725. https://doi.org/10.1039/C2JM34066F

    Article  CAS  Google Scholar 

  256. Zhang C, Song W, Ma Q, Xie L, Zhang X (2016) Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. https://doi.org/10.1021/acs.energyfuels.5b02764

  257. Rostamian R, Heidarpour M, Mousavi SF, Afyuni M (2015) Characterization and sodium sorption capacity of biochar and activated carbon prepared from rice husk. J Agric Sci Technol 17:1057–1069

    Google Scholar 

  258. Mistar EM, Alfatah T, Supardan MD (2020) Synthesis and characterization of activated carbon from Bambusa Vulgaris Striata using two-step KOH activation. J Mater Res Technol 9:6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041

    Article  CAS  Google Scholar 

  259. Saad MJ, Chia CH, Zakaria S, Sajab MS, Misran S, Rahman MHA, Chin SX (2019) Physical and chemical properties of the rice straw activated carbon produced from carbonization and KOH activation processes. Sains Malaysiana 48:385–391. https://doi.org/10.17576/jsm-2019-4802-16

    Article  CAS  Google Scholar 

  260. Gomez-delgado E, Nunell GV, Cukierman AL, Bonelli PR (2022) Influence of the carbonization atmosphere on the development of highly microporous adsorbents tailored to CO2 capture. J Energy Inst 102:184–189. https://doi.org/10.1016/j.joei.2022.03.003

    Article  CAS  Google Scholar 

  261. Li K, Zhang D, Niu X, Guo H, Yu Y, Tang Z, Lin Z, Fu M (2022) Insights into CO2 adsorption on KOH-activated biochars derived from the mixed sewagesludge and pine sawdust. Sci Total Environ 826:154133. https://doi.org/10.1016/j.scitotenv.2022.154133

    Article  CAS  PubMed  ADS  Google Scholar 

  262. Ding S, Liu Y (2020) Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. Fuel 260:116382. https://doi.org/10.1016/j.fuel.2019.116382

    Article  CAS  Google Scholar 

  263. Shao L, Sang Y, Liu N, Liu J, Zhan P, Huang J, Chen J (2020) Selectable microporous carbons derived from poplar wood by three preparation routes for CO2 capture. ACS Omega 5:17450–17462. https://doi.org/10.1021/acsomega.0c01918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kwiatkowski M, Serafin J, Booth AM, Michalkiewicz B (2021) Computer analysis of the effect of activation temperature on the microporous structure development of activated carbon derived from common polypody. Materials (Basel) 14:2951. https://doi.org/10.3390/ma14112951

    Article  CAS  PubMed  ADS  Google Scholar 

  265. Nowrouzi M, Younesi H, Bahramifar N (2018) Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel 223:99–114. https://doi.org/10.1016/j.fuel.2018.03.035

    Article  CAS  Google Scholar 

  266. Varil T, Bergna D, Lahti R, Romar H, Hu T, Lassi U (2017) Activated carbon production from peat using ZnCl2: Characterization and applications. BioResources 12:8078–8092. https://doi.org/10.15376/biores.12.4.8078-8092

    Article  CAS  Google Scholar 

  267. Kumar A, Jena HM (2015) High surface area microporous activated carbons prepared from Fox nut ( Euryale ferox ) shell by zinc chloride activation. Appl Surf Sci 356:753–761. https://doi.org/10.1016/j.apsusc.2015.08.074

    Article  CAS  ADS  Google Scholar 

  268. Heidari A, Younesi H, Rashidi A, Ghoreyshi AA (2014) Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation. J Taiwan Inst Chem Eng 45:579–588. https://doi.org/10.1016/j.jtice.2013.06.007

    Article  CAS  Google Scholar 

  269. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280. https://doi.org/10.1039/c3ee43525c

    Article  CAS  Google Scholar 

  270. Thote JA, Iyer KS, Chatti R, Labhsetwar NK, Biniwale RB, Rayalu SS (2010) In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 48:396–402. https://doi.org/10.1016/j.carbon.2009.09.042

    Article  CAS  Google Scholar 

  271. Ahmed MB, Hasan Johir MA, Zhou JL, Ngo HH, Nghiem LD, Richardson C, Moni MA, Bryant MR (2019) Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. J Clean Prod 225:405–413. https://doi.org/10.1016/j.jclepro.2019.03.342

    Article  CAS  Google Scholar 

  272. Soyler N, SelimCeylan YT (2018) CO2 capture analysis of tobacco biochar-AlCl3 composite. Environ Res Technol 5:34–37

    Google Scholar 

  273. Ma Q, Chen W, Jin Z, Chen L, Zhou Q, Jiang X (2021) One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO2 and H2S. Fuel 289:119932. https://doi.org/10.1016/j.fuel.2020.119932

    Article  CAS  Google Scholar 

  274. Xu X, Zheng Y, Gao B, Cao X (2019) doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chem Eng J 368:564–572. https://doi.org/10.1016/j.cej.2019.02.165

    Article  CAS  Google Scholar 

  275. Nguyen MV, Lee BK (2016) A novel removal of CO2 using nitrogen doped biochar beads as a green adsorbent. Process Saf Environ Prot 104:490–498. https://doi.org/10.1016/j.psep.2016.04.007

    Article  CAS  Google Scholar 

  276. Liu Y, Sajjadi B, Chen WY, Chatterjee R (2019) Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel 247:10–18. https://doi.org/10.1016/j.fuel.2019.03.011

    Article  CAS  Google Scholar 

  277. Sajjadi B, Broome JW, Chen WY, Mattern DL, Egiebor NO, Hammer N, Smith CL (2019) Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity. Ultrason Sonochem 51:20–30. https://doi.org/10.1016/j.ultsonch.2018.09.015

    Article  CAS  PubMed  Google Scholar 

  278. Mohammed Z, Jeelani S, Rangari V (2022) Effective reinforcement of engineered sustainable biochar carbon for 3D printed polypropylene biocomposites. Compos Part C Open Access 7:100221. https://doi.org/10.1016/J.JCOMC.2021.100221

    Article  CAS  Google Scholar 

  279. Chatterjee R, Sajjadi B, Mattern DL, Chen WY, Zubatiuk T, Leszczynska D, Leszczynski J, Egiebor NO, Hammer N (2018) Ultrasound cavitation intensified amine functionalization: A feasible strategy for enhancing CO2 capture capacity of biochar. Fuel 225:287–298. https://doi.org/10.1016/j.fuel.2018.03.145

    Article  CAS  Google Scholar 

  280. Yang H, Li H, Zhai J, Sun L, Yu H (2014) Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite. Ind Eng Chem Res 53:17878–17883. https://doi.org/10.1021/ie503586v

    Article  CAS  Google Scholar 

  281. Chatterjee R, Sajjadi B, Chen W-Y, Mattern DL, Egiebor NO, Hammer N, Raman V (2019) Low frequency ultrasound enhanced dual amination of biochar: A nitrogen-enriched sorbent for CO2 capture. Energy Fuels 33:2366–2380. https://doi.org/10.1021/acs.energyfuels.8b03583

    Article  CAS  Google Scholar 

  282. Li M, Xiao R (2019) Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 capture. Fuel Process Technol 186:35–39. https://doi.org/10.1016/j.fuproc.2018.12.015

    Article  CAS  Google Scholar 

  283. Dissanayake PD, Choi SW, Igalavithana AD, Yang X, Tsang DCW, Wang CH, Kua HW, Lee KB, Ok YS (2020) Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. Renew Sustain Energy Rev 124:109785. https://doi.org/10.1016/j.rser.2020.109785

    Article  CAS  Google Scholar 

  284. González B, Manyà JJ (2020) Activated olive mill waste-based hydrochars as selective adsorbents for CO2 capture under postcombustion conditions. Chem Eng Process - Process Intensif 149:107830. https://doi.org/10.1016/j.cep.2020.107830

    Article  CAS  Google Scholar 

  285. Younas M, Sohail M, Kong LL, Bashir MJK, Sethupathi S (2016) Erratum to: Feasibility of CO2 adsorption by solid adsorbents: A review on low-temperature systems. Int J Environ Sci Technol 13:1839–1860. https://doi.org/10.1007/s13762-016-1008-1

    Article  CAS  Google Scholar 

  286. Cheung O, Hedin N (2014) Zeolites and related sorbents with narrow pores for CO2 separation from flue gas. RSC Adv 4:14480–14494. https://doi.org/10.1039/c3ra48052f

    Article  CAS  ADS  Google Scholar 

  287. Choi HS, Suh MP (2009) Highly selective CO2 capture in flexible 3d coordination polymer networks. Angew Chemie - Int Ed 48:6865–6869. https://doi.org/10.1002/anie.200902836

    Article  CAS  Google Scholar 

  288. Cao L, Zhang X, Xu Y, Xiang W, Wang R, Ding F, Hong P, Gao B (2022) Straw and wood based biochar for CO2 capture: Adsorption performance and governing mechanisms. Sep Purif Technol 287:120592. https://doi.org/10.1016/j.seppur.2022.120592

    Article  CAS  Google Scholar 

  289. Kamarudin KSN, Zaini N, Khairuddin NEA (2018) CO2 removal using amine-functionalized kenaf in pressure swing adsorption system. J Environ Chem Eng 6:549–559. https://doi.org/10.1016/j.jece.2017.12.040

    Article  CAS  Google Scholar 

  290. Abdullah MO, Tan IAW, Lim LS (2011) Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review. Renew Sustain Energy Rev 15:2061–2072. https://doi.org/10.1016/j.rser.2011.01.012

    Article  CAS  Google Scholar 

  291. Lee CS, Ong YL, Aroua MK, Daud WMAW (2013) Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption. Chem Eng J 219:558–564. https://doi.org/10.1016/j.cej.2012.10.064

    Article  CAS  Google Scholar 

  292. Benson SM, Franklin M, Orr J (2008) Carbon dioxide capture and storage. MRS Bull 33:303–305

    Article  CAS  Google Scholar 

  293. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Ministry of Education of Malaysia and Universiti Sains Malaysia under FRGS with Project Code: FRGS/1/2019/TK02/USM/01/3. The authors would like to thank Universiti Malaysia Perlis (UniMAP) for the scholarship granted to the first author.

Author information

Authors and Affiliations

Authors

Contributions

Literature review and drafting the original manuscript: Nuradibah Mohd Amer; Critical revision and supervision: Pooya Lahijani; Writing-review and editing: Maedeh Mohammadi; Funding acquisition and review: Abdul Rahman Mohammad.

Corresponding author

Correspondence to Pooya Lahijani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, N.M., Lahijani, P., Mohammadi, M. et al. Modification of biomass-derived biochar: A practical approach towards development of sustainable CO2 adsorbent. Biomass Conv. Bioref. 14, 7401–7448 (2024). https://doi.org/10.1007/s13399-022-02905-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02905-3

Keywords

Navigation