Skip to main content

Engineering Biochar-Based Materials for Carbon Dioxide Adsorption and Separation

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 12))

  • 250 Accesses

Abstract

Increasing emissions of carbon dioxide, the primary greenhouse gas, are the main contributor to climate change. Developing an effective carbon capture, storage and utilization approach is paramount to overcoming global warming. Emerging research in engineered biochars provides a promising means of utilizing highly abundant lignocellulosic biomass as a precursor for carbon capture. Given appropriate production and modification of its physiochemical properties, biochar can be used as a cost-effective and selective adsorbent for CO2 capture. In this chapter, the engineering of biochar for CO2 capture is reviewed. The effects of different modification processes on the material properties of biochars (i.e. specific surface area, pore volume, pore size, hierarchical pore structure and surface chemistry) and their impacts to CO2 uptake are discussed. Feedstock type, thermochemical conditions of pyrolysis and surface chemical modification via functional groups all play significant roles in determining the texture, porosity, aromaticity and hydrophobicity of biochar, which are key factors to increase CO2 adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Field CB, Barros VR. Climate change 2014–impacts, adaptation and vulnerability: regional aspects. Cambridge: Cambridge University Press; 2014. https://doi.org/10.1017/CBO9781107415386.

    Book  Google Scholar 

  2. Wu F, Argyle MD, Dellenback PA, Fan M. Progress in O2 separation for oxy-fuel combustion–a promising way for cost-effective CO2 capture: a review. Prog Energy Combust Sci. 2018;67:188–205. https://doi.org/10.1016/j.pecs.2018.01.004.

    Article  Google Scholar 

  3. Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M. Recent developments on carbon capture and storage: an overview. Chem Eng Res Des. 2011;89:1446–60. https://doi.org/10.1016/j.cherd.2011.01.028.

    Article  CAS  Google Scholar 

  4. Farmahini AH, Krishnamurthy S, Friedrich D, Brandani S, Sarkisov L. Performance-based screening of porous materials for carbon capture. Chem Rev. 2021;121:10666–741. https://doi.org/10.1021/acs.chemrev.0c01266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joseph S, Peacocke C, Lehmann J, Munroe P. Developing a biochar classification and test methods. In: Lehmann J, Joseph S, editors. Biochar for environmental management: science and technology. 1st ed. London: Routledge; 2009. p. 107–26. https://doi.org/10.4324/9781849770552.

    Chapter  Google Scholar 

  6. Alhashimi HA, Aktas CB. Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl. 2017;118:13–26. https://doi.org/10.1016/j.resconrec.2016.11.016.

    Article  Google Scholar 

  7. Liu W-J, Jiang H, Yu H-Q. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev. 2015;115:12251–85. https://doi.org/10.1021/acs.chemrev.5b00195.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol. 2012;118:536–44. https://doi.org/10.1016/j.biortech.2012.05.042.

    Article  CAS  PubMed  Google Scholar 

  9. Song B, Cao X, Gao W, Aziz S, Gao S, Lam C-H, Lin R. Preparation of nano-biochar from conventional biorefineries for high-value applications. Renew Sust Energ Rev. 2022;157:112057. https://doi.org/10.1016/j.rser.2021.112057.

    Article  CAS  Google Scholar 

  10. Chatterjee R, Sajjadi B, Mattern DL, Chen W-Y, Zubatiuk T, Leszczynska D, Leszczynski J, Egiebor NO, Hammer N. Ultrasound cavitation intensified amine functionalization: a feasible strategy for enhancing CO2 capture capacity of biochar. Fuel. 2018;225:287–98. https://doi.org/10.1016/j.fuel.2018.03.145.

    Article  CAS  Google Scholar 

  11. Karimi M, Shirzad M, Silva JAC, Rodrigues AE. Biomass/biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions. J CO2 Util. 2022;57:101890. https://doi.org/10.1016/j.jcou.2022.101890.

    Article  CAS  Google Scholar 

  12. Ji Y, Zhang C, Zhang XJ, Xie PF, Wu C, Jiang L. A high adsorption capacity bamboo biochar for CO2 capture for low temperature heat utilization. Sep Purif Technol. 2022;293:121131. https://doi.org/10.1016/j.seppur.2022.121131.

    Article  CAS  Google Scholar 

  13. Igalavithana AD, Choi SW, Dissanayake PD, Shang J, Wang C-H, Yang X, Kim S, Tsang DCW, Lee KB, Ok YS. Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. J Hazard Mater. 2020;391:121147. https://doi.org/10.1016/j.jhazmat.2019.121147.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang C, Sun S, Xu S, Wu C. CO2 capture over steam and KOH activated biochar: effect of relative humidity. Biomass Bioenergy. 2022;166:106608. https://doi.org/10.1016/j.biombioe.2022.106608.

    Article  CAS  Google Scholar 

  15. Leng L, Xu S, Liu R, Yu T, Zhuo X, Leng S, Xiong Q, Huang H. Nitrogen containing functional groups of biochar: an overview. Bioresour Technol. 2020;298:122286. https://doi.org/10.1016/j.biortech.2019.122286.

    Article  CAS  PubMed  Google Scholar 

  16. Liu S-H, Huang Y-Y. Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J Clean Prod. 2018;175:354–60. https://doi.org/10.1016/j.jclepro.2017.12.076.

    Article  CAS  Google Scholar 

  17. Saha D, Van Bramer SE, Orkoulas G, Ho H-C, Chen J, Henley DK. CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons. Carbon. 2017;121:257–66. https://doi.org/10.1016/j.carbon.2017.05.088.

    Article  CAS  Google Scholar 

  18. Xu X, Zheng Y, Gao B, Cao X. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chem Eng J. 2019;368:564–72. https://doi.org/10.1016/j.cej.2019.02.165.

    Article  CAS  Google Scholar 

  19. Álvarez-Gutiérrez N, García S, Gil MV, Rubiera F, Pevida C. Towards bio-upgrading of biogas: biomass waste-based adsorbents. Energy Procedia. 2014;63:6527–33. https://doi.org/10.1016/j.egypro.2014.11.688.

    Article  CAS  Google Scholar 

  20. Karimi M, Zafanelli LFAS, Almeida JPP, Ströher GR, Rodrigues AE, Silva JAC. Novel insights into activated carbon derived from municipal solid waste for CO2 uptake: synthesis, adsorption isotherms and scale-up. J Environ Chem Eng. 2020;8:104069. https://doi.org/10.1016/j.jece.2020.104069.

    Article  CAS  Google Scholar 

  21. Sun L, Yang L, Zhang Y-D, Shi Q, Lu R-F, Deng W-Q. Accurate van der Waals force field for gas adsorption in porous materials. J Comput Chem. 2017;38:1991–9. https://doi.org/10.1002/jcc.24832.

    Article  CAS  PubMed  Google Scholar 

  22. Wedler C, Span R. Micropore analysis of biomass chars by CO2 adsorption: comparison of different analysis methods. Energy Fuel. 2021;35:8799–806. https://doi.org/10.1021/acs.energyfuels.1c00280.

    Article  CAS  Google Scholar 

  23. Creamer AE, Gao B, Zhang M. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J. 2014;249:174–9. https://doi.org/10.1016/j.cej.2014.03.105.

    Article  CAS  Google Scholar 

  24. Huang Y-F, Chiueh P-T, Shih C-H, Lo S-L, Sun L, Zhong Y, Qiu C. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy. 2015;84:75–82. https://doi.org/10.1016/j.energy.2015.02.026.

    Article  CAS  Google Scholar 

  25. Sun M, Zhu X, Wu C, Masek O, Wang C-H, Shang J, Ok YS, Tsang DCW. Customizing high-performance molten salt biochar from wood waste for CO2/N2 separation. Fuel Process Technol. 2022;234:107319. https://doi.org/10.1016/j.fuproc.2022.107319.

    Article  CAS  Google Scholar 

  26. Dissanayake PD, You S, Igalavithana AD, Xia Y, Bhatnagar A, Gupta S, Kua HW, Kim S, Kwon J-H, Tsang DCW, Ok YS. Biochar-based adsorbents for carbon dioxide capture: a critical review. Renew Sust Energ Rev. 2020;119:109582. https://doi.org/10.1016/j.rser.2019.109582.

    Article  CAS  Google Scholar 

  27. Presser V, McDonough J, Yeon S-H, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci. 2011;4:3059–66. https://doi.org/10.1039/C1EE01176F.

    Article  CAS  Google Scholar 

  28. Wei H, Deng S, Hu B, Chen Z, Wang B, Huang J, Yu G. Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem. 2012;5:2354–60. https://doi.org/10.1002/cssc.201200570.

    Article  CAS  PubMed  Google Scholar 

  29. Sajjadi B, Chen W-Y, Egiebor NO. A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng. 2019;35:735–76. https://doi.org/10.1515/revce-2017-0113.

    Article  CAS  Google Scholar 

  30. Feng D, Zhao Y, Zhang Y, Zhang Z, Che H, Sun S. Experimental comparison of biochar species on in-situ biomass tar H2O reforming over biochar. Int J Hydrog Energy. 2017;42:24035–46. https://doi.org/10.1016/j.ijhydene.2017.08.013.

    Article  CAS  Google Scholar 

  31. Igalavithana AD, Choi SW, Shang J, Hanif A, Dissanayake PD, Tsang DCW, Kwon J-H, Lee KB, Ok YS. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: effect of porous structure and surface chemistry. Sci Total Environ. 2020;739:139845. https://doi.org/10.1016/j.scitotenv.2020.139845.

    Article  CAS  PubMed  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl Chem. 2015;87:1051–69. https://doi.org/10.1515/pac-2014-1117.

    Article  CAS  Google Scholar 

  33. Shi Q, Zhang X, Shen B, Ren K, Wang Y, Luo J. Enhanced elemental mercury removal via chlorine-based hierarchically porous biochar with CaCO3 as template. Chem Eng J. 2021;406:126828. https://doi.org/10.1016/j.cej.2020.126828.

    Article  CAS  Google Scholar 

  34. Feng D, Guo D, Zhang Y, Sun S, Zhao Y, Chang G, Guo Q, Qin Y. Adsorption-enrichment characterization of CO2 and dynamic retention of free NH3 in functionalized biochar with H2O/NH3·H2O activation for promotion of new ammonia-based carbon capture. Chem Eng J. 2021;409:128193. https://doi.org/10.1016/j.cej.2020.128193.

    Article  CAS  Google Scholar 

  35. Zhang Z, Wang K, Atkinson JD, Yan X, Li X, Rood MJ, Yan Z. Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. J Hazard Mater. 2012;229-230:183–91. https://doi.org/10.1016/j.jhazmat.2012.05.094.

    Article  CAS  PubMed  Google Scholar 

  36. Chiang Y-C, Yeh C-Y, Weng C-H. Carbon dioxide adsorption on porous and functionalized activated carbon fibers. Appl Sci. 2019;9:1977. https://doi.org/10.3390/app9101977.

    Article  CAS  Google Scholar 

  37. Lim G, Lee KB, Ham HC. Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: a density functional theory approach. J Phys Chem C. 2016;120:8087–95. https://doi.org/10.1021/acs.jpcc.5b12090.

    Article  CAS  Google Scholar 

  38. Shafawi AN, Mohamed AR, Lahijani P, Mohammadi M. Recent advances in developing engineered biochar for CO2 capture: an insight into the biochar modification approaches. J Environ Chem Eng. 2021;9:106869. https://doi.org/10.1016/j.jece.2021.106869.

    Article  CAS  Google Scholar 

  39. Nguyen T-D, Shopsowitz KE, MacLachlan MJ. Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J Mater Chem A. 2014;2:5915–21. https://doi.org/10.1039/C3TA15255C.

    Article  CAS  Google Scholar 

  40. Mishra RK, Misra M, Mohanty AK. Value-added biocarbon production through slow pyrolysis of mixed bio-oil wastes: studies on their physicochemical characteristics and structure–property–processing co-relation. Biomass Convers Biorefin. 2022;6:2. https://doi.org/10.1007/s13399-022-02906-2.

    Article  CAS  Google Scholar 

  41. Fan X, Zhang L, Zhang G, Shu Z, Shi J. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon. 2013;61:423–30. https://doi.org/10.1016/j.carbon.2013.05.026.

    Article  CAS  Google Scholar 

  42. Ma Q, Chen W, Jin Z, Chen L, Zhou Q, Jiang X. One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO2 and H2S. Fuel. 2021;289:119932. https://doi.org/10.1016/j.fuel.2020.119932.

    Article  CAS  Google Scholar 

  43. Zhang S, Zhou Q, Jiang X, Yao L, Jiang W, Xie R. Preparation and evaluation of nitrogen-tailored hierarchical meso−/micro-porous activated carbon for CO2 adsorption. Environ Technol. 2020;41:3544–53. https://doi.org/10.1080/09593330.2019.1615131.

    Article  CAS  PubMed  Google Scholar 

  44. Xie W-H, Yao X, Li H, Li H-R, He L-N. Biomass-based N-rich porous carbon materials for CO2 capture and in-situ conversion. ChemSusChem. 2022;15:e202201004. https://doi.org/10.1002/cssc.202201004.

    Article  CAS  PubMed  Google Scholar 

  45. Sutar PN, Jha A, Vaidya PD, Kenig EY. Secondary amines for CO2 capture: a kinetic investigation using N-ethylmonoethanolamine. Chem Eng J. 2012;207-208:718–24. https://doi.org/10.1016/j.cej.2012.07.042.

    Article  CAS  Google Scholar 

  46. Zhang X, Zhang S, Yang H, Shao J, Chen Y, Liao X, Wang X, Chen H. Generalized two-dimensional correlation infrared spectroscopy to reveal mechanisms of CO2 capture in nitrogen enriched biochar. Proc Combust Inst. 2017;36:3933–40. https://doi.org/10.1016/j.proci.2016.06.062.

    Article  CAS  Google Scholar 

  47. Liu Y, Wilcox J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol. 2012;46:1940–7. https://doi.org/10.1021/es204071g.

    Article  CAS  PubMed  Google Scholar 

  48. Xing W, Liu C, Zhou Z, Zhou J, Wang G, Zhuo S, Xue Q, Song L, Yan Z. Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res Lett. 2014;9:189. https://doi.org/10.1186/1556-276X-9-189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed. 2010;49:6058–82. https://doi.org/10.1002/anie.201000431.

    Article  CAS  Google Scholar 

  50. Creamer AE, Gao B, Wang S. Carbon dioxide capture using various metal oxyhydroxide–biochar composites. Chem Eng J. 2016;283:826–32. https://doi.org/10.1016/j.cej.2015.08.037.

    Article  CAS  Google Scholar 

  51. Lahijani P, Mohammadi M, Mohamed AR. Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition. J CO2 Util. 2018;26:281–93. https://doi.org/10.1016/j.jcou.2018.05.018.

    Article  CAS  Google Scholar 

  52. Shen Y, Linville JL, Ignacio-de Leon PAA, Schoene RP, Urgun-Demirtas M. Towards a sustainable paradigm of waste-to-energy process: enhanced anaerobic digestion of sludge with woody biochar. J Clean Prod. 2016;135:1054–64. https://doi.org/10.1016/j.jclepro.2016.06.144.

    Article  CAS  Google Scholar 

  53. Glaser B, Parr M, Braun C, Kopolo G. Biochar is carbon negative. Nat Geosci. 2009;2:2. https://doi.org/10.1038/ngeo395.

    Article  CAS  Google Scholar 

  54. Liu J, Cai Y, Song R, Ding S, Lyu Z, Chang Y-C, Tian H, Zhang X, Du D, Zhu W, Zhou Y, Lin Y. Recent progress on single-atom catalysts for CO2 electroreduction. Mater Today. 2021;48:95–114. https://doi.org/10.1016/j.mattod.2021.02.005.

    Article  CAS  Google Scholar 

  55. Alami AH, Alasad S, Ali M, Alshamsi M. Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Sci Total Environ. 2021;759:143529. https://doi.org/10.1016/j.scitotenv.2020.143529.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, S., Shee, J., Chen, W., Xu, L., Dong, C., Song, B. (2023). Engineering Biochar-Based Materials for Carbon Dioxide Adsorption and Separation. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_8

Download citation

Publish with us

Policies and ethics