Skip to main content
Log in

Effective degradation of amoxicillin using peroxymonosulfate activated with MWCNTs-CuNiFe2O4 as a new catalyst: optimization, degradation pathway, and toxicity assessment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, copper-nickel ferrite (CuNiFe2O4) nanoparticles were fabricated on multi-walled carbon nanotubes (MWCNTs) by co-precipitation method and used to activate peroxymonosulfate (PMS) for amoxicillin (AMX) degradation in aqueous solution. Scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses were performed for the surface morphology and physicochemical properties of the catalyst. High catalytic activity for AMX degradation by MWCNTs-CuNiFe2O4/PMS system (100%) was achieved at a reaction time of 120 min compared to other heterogeneous systems such as Fe3O4/PMS (67.85%), CuFe2O4/PMS (83.2%), and NiFe2O4/PMS (76.56%). The AMX degradation efficiency increased with increasing dosage of PMS and catalyst, while it decreased with the presence of high AMX concentration and different anions. For four consecutive reaction cycles, the degradation efficiency of AMX did not decrease significantly, indicating the good reusability of MWCNTs-CuNiFe2O4 in long-term treatment of AMX solution. Quenching tests showed that sulfate (SO4•−) and hydroxyl (HO) radicals are the main reactive species in AMX degradation. The high BOD5/COD ratio emphasizes that the present catalytic process can oxidize AMX to the compounds with low molecular weight. The presence of NH4+, NO3, and SO42− ions in the treated effluent indicates that AMX is well mineralized. Toxicity tests performed by culture of Escherichia coli and Staphylococcus aureus explained that the MWCNTs-CuNiFe2O4/PMS system could reduce the toxicity of the major contaminant and its byproducts. The AMX degradation pathway was proposed through the identification of intermediates by gas chromatography-mass spectrometry (GC–MS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Supported by authors declaration.

Code availability

Not applicable.

References

  1. Sepehr MN, Allani F, Zarrabi M, Darvishmotevalli M, Vasseghian Y, Fadaei S, Fazli MM (2019) Data Brief 22:676–686

    Article  Google Scholar 

  2. Dehghan A, Mohammadi AA, Yousefi M, Najafpoor AA, Shams M, Rezania S (2019) Nanomaterials 9:1422

    Article  Google Scholar 

  3. Khosravi R, Zarei A, Heidari M, Ahmadfazeli A, Vosughi M, Fazlzadeh M (2018) Korean J Chem Eng 35:1000–1008

    Article  Google Scholar 

  4. Dehghan A, Zarei A, Jaafari J, Shams M, Khaneghah AM (2019) Chemosphere 217:250–260

    Article  Google Scholar 

  5. Hu J, Bian X, Xia Y, Weng M, Zhou W, Dai Q (2020) Sep Purif Technol 250:117109

    Article  Google Scholar 

  6. Matsubara ME, Helwig K, Hunter C, Roberts J, Subtil EL, Coelho LHG (2020) Ecotoxicol Environ Saf 192:110258

    Article  Google Scholar 

  7. Yousefi M, Gholami M, Oskoei V, Mohammadi AA, Baziar M, Esrafili A (2021) J Environ Chem Eng 9:105677

    Article  Google Scholar 

  8. Taherkhani S, Darvishmotevalli M, Karimyan K, Bina B, Fallahi A, Karimi H (2018) Data Brief 19:1997–2007

    Article  Google Scholar 

  9. Bian X, Xia Y, Zhan T, Wang L, Zhou W, Dai Q, Chen J (2019) Chemosphere 233:762–770

    Article  Google Scholar 

  10. Verma M, Haritash A (2020) Environ Technol Innov 20:101072

    Article  Google Scholar 

  11. Weng X, Cai W, Lin S, Chen Z (2017) Appl Clay Sci 147:137–142

    Article  Google Scholar 

  12. Naghan DJ, Motevalli MD, Mirzaei N, Javid A, Ghaffari HR, Ahmadpour M, Moradi M, Sharafi K (2015) Bul Chem Commun 47:206–210

    Google Scholar 

  13. Mansourian N, Javedan G, Darvishmotevalli M, Sharafi K, Ghaffari H, Sharafi H, Arfaeinia H (2016) Int J Pharm Technol 8:13891–13907

    Google Scholar 

  14. Mohammadi H, Alinejad A, Khajeh M, Darvishmotevalli M, Moradnia M, Tehrani AM, Hosseindost G, Zare MR, Mengelizadeh N (2019) J Chem Technol Biotechnol 94:3158–3171

    Article  Google Scholar 

  15. Ramírez-Franco JH, Galeano L-A, Vicente M-A (2019) J Environ Chem Eng 7:103274

    Article  Google Scholar 

  16. Liu F, Cao J, Yang Z, Xiong W, Xu Z, Song P, Jia M, Sun S, Zhang Y, Zhong X (2021) J Colloid Interface Sci 581:195–204

    Article  Google Scholar 

  17. Fadaei S, Noorisepehr M, Pourzamani H, Salari M, Moradnia M, Darvishmotevalli M, Mengelizadeh N (2021) J Environ Chem Eng 9:105414

    Article  Google Scholar 

  18. Cui X, Liu X, Lin C, He M, Ouyang W (2020) Chemosphere 254:126820

    Article  Google Scholar 

  19. Ghadari R, Namazi H, Aghazadeh M (2018) Appl Organomet Chem 32:e3965

    Article  Google Scholar 

  20. Kazemi M, Ghobadi M, Mirzaie A (2018) Nanotechnol Rev 7:43–68

    Article  Google Scholar 

  21. Kesavan G, Nataraj N, Chen S-M, Lin L-H (2020) New J Chem 44:7698–7707

    Article  Google Scholar 

  22. Wang Z, Du Y, Liu Y, Zou B, Xiao J, Ma JJRA (2016) RSC Adv 6:11040–11048

    Article  Google Scholar 

  23. Velinov N, Petrova T, Ivanova R, Tsoncheva T, Kovacheva D, Mitov I (2020) Hyperfine Interact 241:1–12

    Article  Google Scholar 

  24. Kharisov BI, Dias HR, Kharissova OV (2019) Arab J Chem 12:1234–1246

    Article  Google Scholar 

  25. Khalifeh R, Rajabzadeh M, Ebadi A (2019) Chemistry Select 4:13089–13093

    Google Scholar 

  26. Suharyadi E, Griyanika L, Utomo J, Agustina AK, Kato T, Iwata S (2018) Indones J Appl Phys 8:75–80

    Article  Google Scholar 

  27. Afshin S, Rashtbari Y, Vosough M, Dargahi A, Fazlzadeh M, Behzad A, Yousefi M (2021) J Water Process Eng 42:102113

    Article  Google Scholar 

  28. Yousefi M, Nabizadeh R, Alimohammadi M, Mohammadi AA, Mahvi AH (2019) Desalin Water Treat 158:290–300

    Article  Google Scholar 

  29. Dehghani MH, Yetilmezsoy K, Salari M, Heidarinejad Z, Yousefi M, Sillanpää M (2020) J Mol Liq 299:112154

    Article  Google Scholar 

  30. Mohammadi AA, Dehghani MH, Mesdaghinia A, Yaghmaian K, Es’haghi Z (2020) Int J Biol Macromol 155:1019–1029

    Article  Google Scholar 

  31. Ghadiri SK, Alidadi H, Tavakkoli Nezhad N, Javid A, Roudbari A, Talebi SS, Mohammadi AA, Shams M, Rezania S (2020) Plos One 15:e0231045

    Article  Google Scholar 

  32. Kouhpayeh A, Moazzen M, Jahed Khaniki GR, Dobaradaran S, Shariatifar N, Ahmadloo M, Azari A, Nazmara S, Kiani A, Salari M (2017) J Mazandaran Univ Med Sci 26:257–267

    Google Scholar 

  33. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Nanoscale Res Lett 9:393

    Article  Google Scholar 

  34. Mujahid M, Khan RU, Mumtaz M, Soomro SA, Ullah S (2019) Ceram Int 45:8486–8493

    Article  Google Scholar 

  35. Zhang X, Feng M, Qu R, Liu H, Wang L, Wang Z (2016) Chem Eng J 301:1–11

    Article  Google Scholar 

  36. Singhal S, Sharma R, Singh C, Bansal S (2013) Indian J Mater Sci 2013: 1–7

  37. Karthika V, Arumugam A (2016) Synthesis and characterization of MWCNT/TiO2/Au nanocomposite for photocatalytic and antimicrobial activity 11 113–118

  38. Rajabzadeh M, Khalifeh R, Eshghi H, Bakavoli M (2018) J Catal 360:261–269

    Article  Google Scholar 

  39. Guo W, Su S, Yi C, Ma Z (2013) Environ Prog Sustainable Energy 32:193–197

    Article  Google Scholar 

  40. Dong X, Ren B, Sun Z, Li C, Zhang X, Kong M, Zheng S, Dionysiou DD (2019) Appl Catal B 253:206–217

    Article  Google Scholar 

  41. Kermani M, Farzadkia M, Morovati M, Taghavi M, Fallahizadeh S, Khaksefidi R, Norzaee S (2020) J Environ Manag 266:110616

    Article  Google Scholar 

  42. Qin W, Fang G, Wang Y, Zhou D (2018) Chem Eng J 348:526–534

    Article  Google Scholar 

  43. Peng Q, Ding Y, Zhu L, Zhang G, Tang H (2018) Sep Purif Technol 202:307–317

    Article  Google Scholar 

  44. Liu Y, Guo H, Zhang Y, Tang W, Cheng X, Li W (2018) Chem Eng J 343:128–137

    Article  Google Scholar 

  45. Manu B, Mahamood R (2012) J Sustain Energy Environ 3:173–176

    Google Scholar 

  46. Pourzamani H, Mengelizadeh N, Hajizadeh Y, Mohammadi H (2018) Environ Sci Pollut Res 25:24746–24763

    Article  Google Scholar 

  47. Tan C, Gao N, Deng Y, Deng J, Zhou S, Li J, Xin X (2014) J Hazard Mater 276:452–460

    Article  Google Scholar 

  48. Pourzamani H, Jafari E, Rozveh M, Mohammadi H, Rostami M, Mengelizadeh N (2019) Desalin Water Treat 167:156–169

    Article  Google Scholar 

  49. Mohammadi A, Kazemipour M, Ranjbar H, Walker RB, Ansari M (2015) Fuller Nanotub Carbon Nanostructures 23:165–169

    Article  Google Scholar 

  50. Wang J, Wang S (2018) Chem Eng J 334:1502–1517

    Article  Google Scholar 

  51. Lee H, Lee H-J, Jeong J, Lee J, Park N-B, Lee C (2015) Chem Eng J 266:28–33

    Article  Google Scholar 

  52. Sun H, Kwan C, Suvorova A, Ang HM, Tadé MO, Wang S (2014) Appl Catal B 154:134–141

    Article  Google Scholar 

  53. Yu Y, Ji Y, Lu J, Yin X, Zhou Q (2020) Chem Eng J 406:126759

    Article  Google Scholar 

  54. Hassani A, Eghbali P, Kakavandi B, Lin K-YA, Ghanbari F (2020) Environ Technol Innov 20:101127

    Article  Google Scholar 

  55. Gao Y, Zhao Q, Li Y, Li Y, Gou J, Cheng X (2021) Chem Eng J 405:126719

    Article  Google Scholar 

  56. Rahmani A, Salari M, Tari K, Shabanloo A, Shabanloo N, Bajalan S (2020) J Environ Chem Eng 8:104468

    Article  Google Scholar 

  57. Asgari G, Seid-Mohammadi A, Rahmani A, Samadi MT, Salari M, Alizadeh S, Nematollahi D (2021) Chemosphere 266:129179

    Article  Google Scholar 

  58. Asgari G, Seid-mohammadi A, Rahmani A, Samadi MT, Alizadeh S, Nematollahi D, Salari M (2021) Sep Purif Technol 274: 118962

  59. Huang Z, Bao H, Yao Y, Lu J, Lu W, Chen W (2016) J Chem Technol Biotechnol 91:1257–1265

    Article  Google Scholar 

  60. Yang N, Cui J, Zhang L, Xiao W, Alshawabkeh AN, Mao X (2016) J Chem Technol Biotechnol 91:938–947

    Article  Google Scholar 

  61. Motevalli M, Naghan D, Mirzaei N, Haghighi S, Hosseini Z, Sharafi H, Sharafi K (2015) Int J Pharm Technol 7:9672–9679

    Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support provided by the Department of Environmental Health Engineering of Larestan University of Medical Sciences (Grant No. 1397022).

Author information

Authors and Affiliations

Authors

Contributions

AR and NM: supervision, conceptualization, and funding acquisition. MD and MS: methodology and project administration. MM and MN: formal analysis and resources. HN and R: visualization and data curation. BN, MH, and SA: assistant experimenter and roles/writing—original draft. NM, MS, and MD: main writer and experimenter.

Corresponding authors

Correspondence to Mohammad Darvishmotevalli or Mehdi Salari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1425 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A., Mengelizadeh, N., Darvishmotevalli, M. et al. Effective degradation of amoxicillin using peroxymonosulfate activated with MWCNTs-CuNiFe2O4 as a new catalyst: optimization, degradation pathway, and toxicity assessment. Biomass Conv. Bioref. 13, 11983–11996 (2023). https://doi.org/10.1007/s13399-022-02305-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02305-7

Keywords

Navigation