Skip to main content

Advertisement

Log in

A comprehensive review on enhanced production of microbial lipids for high-value applications

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Microbes are the major source of lipids, which include fatty acids and glycerolipids. Lipids are used as bioplastic and biosurfactants in several industries. Value-added compounds like alpha-linolenic acid, 1,3-propanediol (1,3-PDO), fatty acid methyl esters (FAME), keto-carotenoids, lactic acid, 2,3-butanediol, citric acid, lutein, polyunsaturated fatty acids (PUFAs), 1,3-dihydroxyacetone, oleic acid, propionic acid, and succinic acid have huge applications in textile, cosmetic, food, metallurgy, and pharmaceutical industries. These microbial-based lipids have various industrial and technology applications as printing inks, lubricants, coatings, polymers, solvents, leather processing, hydraulic fluids, surfactants, glycerin (glycerol), pesticide/herbicide adjuvants, and fuels. Biotechnological processes such as medium engineering and metabolic engineering can enhance lipid production in microbes to a certain limit. Integrated biorefinery concept was introduced for cost reduction, efficient utilisation of feedstocks, high yield, zero waste discharges, high productivity, and economically viable technology development. It integrates the conversion of biomass to energy and other high-value products. This review focuses on the bioreactor design; integrated biorefineries; genetic and metabolic engineering prospect of enhanced microbial lipid production; application of microbial lipids in various sectors such as pharmaceuticals, dietary supplement, cosmetics, and biodiesel production; costing; and life cycle assessment. Furthermore, value-added products such as carotenoids, organic acids, polyhydroxyalkanoates, and fatty acids were also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Domínguez-Avila AA, González-Aguilar GA (2018) Lipids. In: Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, pp 273–292

  2. Ruiz-Lopez N, Usher S, Sayanova OV et al (2015) Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol 99:143–154

    Article  Google Scholar 

  3. Murphy DJ (2012) Oil crops as potential sources of biofuels. Technological innovations in major world oil crops, Volume 2: Perspectives. Springer, New York, pp 269–284

    Chapter  Google Scholar 

  4. Hermann CL, McGlade JJ (1974) Industrial applications for animal fatty oils. J Am Oil Chem Soc 51:88–92. https://doi.org/10.1007/BF00000020

    Article  Google Scholar 

  5. Santek MI, Beluhan S, Santek B (2018) Production of microbial lipids from lignocellulosic biomass. In: Advances in biofuels and bioenergy. InTech

  6. Hui L, Wan C, Hai-Tao D et al (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562. https://doi.org/10.1016/j.biortech.2010.04.027

    Article  Google Scholar 

  7. Bharathiraja B, Sridharan S, Sowmya V et al (2017) Microbial oil – a plausible alternate resource for food and fuel application. Bioresour Technol 233:423–432

    Article  Google Scholar 

  8. Shi S, Zhao H (2017) Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8

  9. Tao BY (2007) Industrial applications for plant oils and lipids. In: Bioprocessing for value-added products from renewable resources. Elsevier, pp 611–627

  10. Home | Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en. Accessed 18 Jun 2021

  11. Biochemistry (Book, 2007) [WorldCat.org]. https://www.worldcat.org/title/biochemistry/oclc/61500079. Accessed 25 Jun 2021

  12. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  Google Scholar 

  13. Dong T, Fei Q, Genelot M et al (2017) A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense. Energy Convers Manag 140:62–70. https://doi.org/10.1016/j.enconman.2017.02.075

    Article  Google Scholar 

  14. Bhatia SK, Gurav R, Choi TR, et al (2019) Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp YHY01. Bioresour Technol 289 https://doi.org/10.1016/j.biortech.2019.121704

  15. Abeln F, Fan J, Budarin VL et al (2019) Lipid production through the single-step microwave hydrolysis of macroalgae using the oleaginous yeast Metschnikowia pulcherrima. Algal Res 38:101411. https://doi.org/10.1016/j.algal.2019.101411

    Article  Google Scholar 

  16. Dohaei M, Karimi K, Rahimmalek M, Satari B (2020) Integrated biorefinery of aquatic fern Azolla filiculoides for enhanced extraction of phenolics, protein, and lipid and methane production from the residues. J Clean Prod 276:123175. https://doi.org/10.1016/j.jclepro.2020.123175

    Article  Google Scholar 

  17. Ayadi I, Belghith H, Gargouri A, Guerfali M (2018) Screening of new oleaginous yeasts for single cell oil production, hydrolytic potential exploitation and agro-industrial by-products valorization. Process Saf Environ Prot 119:104–114. https://doi.org/10.1016/j.psep.2018.07.012

    Article  Google Scholar 

  18. Nayak M, Suh WI, Chang YK, Lee B (2019) Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour Technol 276:110–118. https://doi.org/10.1016/J.BIORTECH.2018.12.111

    Article  Google Scholar 

  19. Shokravi H, Shokravi Z, Heidarrezaei M et al (2021) Fourth generation biofuel from genetically modified algal biomass: challenges and future directions. Chemosphere 285:131535. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131535

    Article  Google Scholar 

  20. Zhang C, Shen H, Zhang X et al (2016) Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids. Biotechnol Lett 38:1733–1738. https://doi.org/10.1007/s10529-016-2148-6

    Article  Google Scholar 

  21. Bongiovani N, Popovich CA, Martínez AM et al (2020) Biorefinery approach from Nannochloropsis oceanica CCALA 978: neutral lipid and carotenoid co-production under nitrate or phosphate deprivation. Bioenergy Res 13:518–529. https://doi.org/10.1007/s12155-019-10045-2

    Article  Google Scholar 

  22. Morales-Sánchez D, Schulze PSC, Kiron V, Wijffels RH (2020) Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. Algal Res 50:102016. https://doi.org/10.1016/j.algal.2020.102016

    Article  Google Scholar 

  23. Li Q, Zhao Y, Ding W, et al (2021) Gamma-aminobutyric acid facilitates the simultaneous production of biomass, astaxanthin and lipids in Haematococcus pluvialis under salinity and high-light stress conditions. Bioresour Technol 320https://doi.org/10.1016/j.biortech.2020.124418

  24. Lee N, Ko SR, Ahn CY, Oh HM (2018) Optimized co-production of lipids and carotenoids from Ettlia sp. by regulating stress conditions. Bioresour Technol 258:234–239. https://doi.org/10.1016/j.biortech.2018.03.006

    Article  Google Scholar 

  25. Li Z, Meng T, Ling X et al (2018) Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J Agric Food Chem 66:5382–5391. https://doi.org/10.1021/acs.jafc.8b01026

    Article  Google Scholar 

  26. Esakkimuthu S, Krishnamurthy V, Wang S et al (2020) Application of p-coumaric acid for extraordinary lipid production in Tetradesmus obliquus: a sustainable approach towards enhanced biodiesel production. Renew Energy 157:368–376. https://doi.org/10.1016/j.renene.2020.05.005

    Article  Google Scholar 

  27. Chen L, Zhang L, Liu T (2016) Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum. Bioresour Technol 214:567–573. https://doi.org/10.1016/j.biortech.2016.05.017

    Article  Google Scholar 

  28. De Jaeger L, Verbeek REM, Draaisma RB et al (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:1–11. https://doi.org/10.1186/1754-6834-7-69

    Article  Google Scholar 

  29. Bhatia SK, Bhatia RK, Yang YH (2017) An overview of microdiesel — a sustainable future source of renewable energy. Renew Sustain Energy Rev 79:1078–1090

    Article  Google Scholar 

  30. Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667

    Article  Google Scholar 

  31. Kakarla R, Kuppam C, Pandit S, et al (2017) Algae—the potential future fuel: challenges and prospects. Microb Appl 239–251https://doi.org/10.1007/978-3-319-52666-9_11

  32. Rawat J, Gupta PK, Pandit S et al (2021) Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 116(11):1–27. https://doi.org/10.1007/S13205-021-02851-3

    Article  Google Scholar 

  33. Zt W, N U, S J, et al (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868. https://doi.org/10.1128/EC.00272-09

    Article  Google Scholar 

  34. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259. https://doi.org/10.1111/J.1440-1835.2006.00416.X

    Article  Google Scholar 

  35. Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13:540–550. https://doi.org/10.1111/PBI.12278

    Article  Google Scholar 

  36. Wu H, Karanjikar M, San KY (2014) Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol. Metab Eng 25:82–91. https://doi.org/10.1016/j.ymben.2014.06.009

    Article  Google Scholar 

  37. Guo D, Zhu J, Deng Z, Liu T (2014) Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metab Eng 22:69–75. https://doi.org/10.1016/j.ymben.2014.01.003

    Article  Google Scholar 

  38. Sinskey AJ, Kurosawa K, Wewetzer SJ (2014) Triacylglycerol production from corn stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels. Lignocellul Biofuels J Microb Biochem Technol 6:254–259. https://doi.org/10.4172/1948-5948.1000153

    Article  Google Scholar 

  39. Guamán LP, Oliveira-Filho ER, Barba-Ostria C et al (2018) xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderiasacchari. J Ind Microbiol Biotechnol 45:165–173. https://doi.org/10.1007/S10295-018-2007-7

    Article  Google Scholar 

  40. KW T, YK L (2016) The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnol Biofuels 9https://doi.org/10.1186/S13068-016-0671-2

  41. Zheng Y, Li L, Liu Q, et al (2012) Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels 5https://doi.org/10.1186/1754-6834-5-76

  42. Fan L, Liu J, Nie K et al (2013) Synthesis of medium chain length fatty acid ethyl esters in engineered Escherichia coli using endogenously produced medium chain fatty acids. Enzyme Microb Technol 53:128–133. https://doi.org/10.1016/j.enzmictec.2013.03.012

    Article  Google Scholar 

  43. Tao H, Guo D, Zhang Y et al (2015) Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property. Biotechnol Biofuels 8:1–11. https://doi.org/10.1186/s13068-015-0270-7

    Article  Google Scholar 

  44. Hernández MA, Comba S, Arabolaza A et al (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191–2207. https://doi.org/10.1007/s00253-014-6002-2

    Article  Google Scholar 

  45. Shahid A, Rehman A, ur, Usman M, et al (2020) Engineering the metabolic pathways of lipid biosynthesis to develop robust microalgal strains for biodiesel production. Biotechnol Appl Biochem 67:41–51

    Article  Google Scholar 

  46. Fillet S, Gibert J, Suárez B et al (2015) Fatty alcohols production by oleaginous yeast. J Ind Microbiol Biotechnol 42:1463–1472. https://doi.org/10.1007/s10295-015-1674-x

    Article  Google Scholar 

  47. Görner C, Redai V, Bracharz F et al (2016) Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chem 18:2037–2046. https://doi.org/10.1039/c5gc01767j

    Article  Google Scholar 

  48. Wang W, Wei H, Knoshaug E et al (2016) Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnol Biofuels 9:227. https://doi.org/10.1186/s13068-016-0647-2

    Article  Google Scholar 

  49. Cordova LT, Alper HS (2018) Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation. Appl Microbiol Biotechnol 102:8809–8816. https://doi.org/10.1007/s00253-018-9349-y

    Article  Google Scholar 

  50. Xue J, Niu YF, Huang T et al (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9. https://doi.org/10.1016/j.ymben.2014.10.002

    Article  Google Scholar 

  51. Trentacoste EM, Shrestha RP, Smith SR et al (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110:19748–19753. https://doi.org/10.1073/pnas.1309299110

    Article  Google Scholar 

  52. Yan J, Cheng R, Lin X et al (2013) Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Appl Microbiol Biotechnol 97:1933–1939. https://doi.org/10.1007/s00253-012-4481-6

    Article  Google Scholar 

  53. La Russa M, Bogen C, Uhmeyer A et al (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20. https://doi.org/10.1016/j.jbiotec.2012.04.006

    Article  Google Scholar 

  54. Hsieh HJ, Su CH, Chien LJ (2012) Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol 50:526–534. https://doi.org/10.1007/s12275-012-2041-5

    Article  Google Scholar 

  55. Bhatia SK, Gurav R, Choi TR, et al (2019) A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY01 by medium engineering. Bioresour Technol 286 https://doi.org/10.1016/j.biortech.2019.121383

  56. Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:1–26. https://doi.org/10.1186/1754-6834-7-7

    Article  Google Scholar 

  57. Cronan JE, Thomas J (2009) Chapter 17 Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433

    Article  Google Scholar 

  58. Saad N, Abdeshahian P, Kalil MS, et al (2014) Optimization of aeration and agitation rate for lipid and gamma linolenic acid production by Cunninghamella bainieri 2a1 in submerged fermentation using response surface methodology. Sci World J 2014https://doi.org/10.1155/2014/280146

  59. Chatzifragkou A, Fakas S, Galiotou-Panayotou M et al (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057. https://doi.org/10.1002/ejlt.201000027

    Article  Google Scholar 

  60. Zikou E, Chatzifragkou A, Koutinas AA, Papanikolaou S (2013) Evaluating glucose and xylose as cosubstrates for lipid accumulation and γ-linolenic acid biosynthesis of Thamnidium elegans. J Appl Microbiol 114:1020–1032. https://doi.org/10.1111/jam.12116

    Article  Google Scholar 

  61. Vamvakaki AN, Kandarakis I, Kaminarides S et al (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10:348–360. https://doi.org/10.1002/elsc.201000063

    Article  Google Scholar 

  62. Younes S, Bracharz F, Awad D et al (2020) Microbial lipid production by oleaginous yeasts grown on Scenedesmus obtusiusculus microalgae biomass hydrolysate. Bioprocess Biosyst Eng 43:1629–1638. https://doi.org/10.1007/s00449-020-02354-0

    Article  Google Scholar 

  63. Xenopoulos E, Giannikakis I, Chatzifragkou A, et al (2020) Lipid production by yeasts growing on commercial xylose in submerged cultures with process water being partially replaced by olive millwastewaters. Processes 8https://doi.org/10.3390/pr8070819

  64. Philippoussis AN (2009) Production of mushrooms using agro-industrial residues as substrates. Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, Netherlands, pp 163–196

    Chapter  Google Scholar 

  65. Fei Q, O’Brien M, Nelson R et al (2016) Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol Biofuels 9:130. https://doi.org/10.1186/s13068-016-0542-x

    Article  Google Scholar 

  66. Rau U, Nguyen LA, Roeper H et al (2005) Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 68:607–613. https://doi.org/10.1007/s00253-005-1906-5

    Article  Google Scholar 

  67. Wiebe MG, Koivuranta K, Penttilä M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12:1–10. https://doi.org/10.1186/1472-6750-12-26

    Article  Google Scholar 

  68. Carota E, Petruccioli M, D’Annibale A, Crognale S (2020) Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production. Heliyon 6https://doi.org/10.1016/j.heliyon.2020.e04801

  69. Fu R, Fei Q, Shang L et al (2018) Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. J Ind Microbiol Biotechnol 45:1045–1051. https://doi.org/10.1007/s10295-018-2081-x

    Article  Google Scholar 

  70. Poontawee L (2020) Feeding strategies of two-stage fed-batch cultivation processes for microbial lipid production from sugarcane top hydrolysate and crude glycerol by the oleaginous red teast Rhodosporidiobolus fluvialis. Microorganisms 8:151. https://doi.org/10.3390/microorganisms8020151

    Article  Google Scholar 

  71. Dange P, Gawas S, Pandit S, et al (2022) Chapter 7 - Trends in photobioreactor technology for microalgal biomass production along with wastewater treatment: Bottlenecks and breakthroughs. In: Shah M, Rodriguez-Couto S, De La Cruz CBV, Biswas J (eds) An Integration of Phycoremediation Processes in Wastewater Treatment. Elsevier, pp 135–154

  72. Satoshi T, Yoshito S, Kazunori I et al (2007) A novel gene with antisalt and anticadmium stress activities from a halotolerant marine green alga Chlamydomonas sp. W80. FEMS Microbiol Lett 271:48–52. https://doi.org/10.1111/J.1574-6968.2007.00696.X

    Article  Google Scholar 

  73. Barros AI, Gonçalves AL, Simões M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500. https://doi.org/10.1016/J.RSER.2014.09.037

    Article  Google Scholar 

  74. Vermaak L, Neomagus HWJP, Bessarabov DG (2021) Recent advances in membrane-based electrochemical hydrogen separation: a review. Membr 11:127. https://doi.org/10.3390/MEMBRANES11020127

    Article  Google Scholar 

  75. Wang SK, Stiles AR, Guo C, Liu CZ (2015) Harvesting microalgae by magnetic separation: a review. Algal Res 9:178–185. https://doi.org/10.1016/J.ALGAL.2015.03.005

    Article  Google Scholar 

  76. Sen Tan J, Lee SY, Chew KW et al (2020) A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11:116–129. https://doi.org/10.1080/21655979.2020.1711626

    Article  Google Scholar 

  77. Roush DJ, Lu Y (2008) Advances in primary recovery: centrifugation and membrane technology. In: Biotechnology progress. Biotechnol Prog, pp 488–495

  78. Suh CW, Kim SE, Lee EK (1997) Effects of filter additives on cake filtration performance. Korean J Chem Eng 14:241–244. https://doi.org/10.1007/BF02706818

    Article  Google Scholar 

  79. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  Google Scholar 

  80. Bautista J, Chico E, Machado A (1986) Cell removal from fermentation broth by flocculation + sedimentation. Biotechnol Lett 8:315–318. https://doi.org/10.1007/BF01040856

    Article  Google Scholar 

  81. Soares E V. (2009) Cell separation: yeast flocculation. In: Encyclopedia of industrial biotechnology. John Wiley & Sons, Inc., pp 1–15

  82. Alhattab M, Brooks MSL (2017) Dispersed air flotation and foam fractionation for the recovery of microalgae in the production of biodiesel. Sep Sci Technol 52:2002–2016

    Article  Google Scholar 

  83. Ananthi V, Balaji P, Sindhu R et al (2021) A critical review on different harvesting techniques for algal based biodiesel production. Sci Total Environ 780:146467

    Article  Google Scholar 

  84. Godbole EP, Dabhadkar KC (2016) Review of production of biofuels. IOSR J Biotechnol Biochem IOSR JBB 2:62–69. https://doi.org/10.9790/264X-02066269

  85. Jin G, Yang F, Hu C et al (2012) Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 111:378–382. https://doi.org/10.1016/j.biortech.2012.01.152

    Article  Google Scholar 

  86. Bonturi N, Matsakas L, Nilsson R et al (2015) Single cell oil producing yeasts Lipomyces starkeyi and Rhodosporidium toruloides: selection of extraction strategies and biodiesel property prediction. Energies 8:5040–5052. https://doi.org/10.3390/en8065040

    Article  Google Scholar 

  87. N-HEXANE | CAMEO Chemicals | NOAA. https://cameochemicals.noaa.gov/chemical/851. Accessed 18 Jun 2021

  88. Harris J, Viner K, Champagne P, Jessop PG (2018) Advances in microalgal lipid extraction for biofuel production: a review. Biofuels, Bioprod Biorefining 12:1118–1135. https://doi.org/10.1002/BBB.1923

    Article  Google Scholar 

  89. Nisha A, Udaya Sankar K, Venkateswaran G (2012) Supercritical CO 2 extraction of Mortierella alpina single cell oil: comparison with organic solvent extraction. Food Chem 133:220–226. https://doi.org/10.1016/j.foodchem.2011.12.081

    Article  Google Scholar 

  90. Santana A, Jesus S, Larrayoz MA, Filho RM (2012) Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. In: Procedia Engineering. Elsevier Ltd, pp 1755–1761

  91. Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895

    Article  Google Scholar 

  92. Axelsson M, Gentili F (2014) A single-step method for rapid extraction of total lipids from green microalgae. PLoS ONE 9:89643. https://doi.org/10.1371/journal.pone.0089643

    Article  Google Scholar 

  93. Chen C-L, Chang J-S, Lee D-J (2015) Dewatering and drying methods for microalgae. Int J 33:443–454. https://doi.org/10.1080/07373937.2014.997881

    Article  Google Scholar 

  94. Teixeira Franco T, Hernalsteens S, López GARZÓN CS, Vaz Rossel CE (2009) Microbial lipid production process and composition containing said lipids. https://patents.google.com/patent/WO2010017610A1/en

  95. Bailey RB, Natick S (2016) Enhanced production of lipids containing polyenoic fatty acids by very high density cultures of eukaryotic microbes in fermentors. United States Patent. https://patents.google.com/patent/US6607900B2/en

  96. Barker M, Tabayehnejad N, Shank G, Leininger NF, Matthews KL Sr (2014) Processes for obtaining microbial oil from microbial cells. https://patents.google.com/patent/EP3082794A2/un

  97. Oliveira RP, Lages F, Lucas C (1996) Isolation and characterisation of mutants from the halotolerant yeast Pichia sorbitophila defective in H+/glycerol symport activity. FEMS Microbiol Lett 142:147–153. https://doi.org/10.1016/0378-1097(96)00256-X

    Article  Google Scholar 

  98. Bailey R, DiMasi D, DiMasi D, Diego S (2001) (76) Inventors: Bailey RB, Del Mar, Enhanced production of lipids containing polyenoic fatty acid by very high-density cultures of eukaryotic microbes in fermentors. CA (US), 12. https://patents.google.com/patent/US20080032381

  99. Sun Q, Li A, Li M, Hou B (2015) Effect of pH on biodiesel production and the microbial structure of glucose-fed activated sludge. Int Biodeterior Biodegradation 104:224–230. https://doi.org/10.1016/J.IBIOD.2015.06.003

    Article  Google Scholar 

  100. Islam MA, Brown RJ, O’Hara I et al (2014) Effect of temperature and moisture on high pressure lipid/oil extraction from microalgae. Energy Convers Manag 88:307–316. https://doi.org/10.1016/J.ENCONMAN.2014.08.038

    Article  Google Scholar 

  101. Chaisutyakorn P, Praiboon J (2017) Kaewsuralikhit C (2017) The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. J Appl Phycol 301(30):37–45. https://doi.org/10.1007/S10811-017-1186-3

    Article  Google Scholar 

  102. Morales-Sánchez D, Schulze PSC, Kiron V, Wijffels RH (2020) Temperature-dependent lipid accumulation in the polar marine microalga Chlamydomonas malina RCC2488. Front Plant Sci 0:2080https://doi.org/10.3389/FPLS.2020.619064

  103. X M, H Z, H H, et al (2014) Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs). Appl Biochem Biotechnol 174:1631–1650. https://doi.org/10.1007/S12010-014-1134-5

    Article  Google Scholar 

  104. Converti A, Casazza AA, Ortiz EY et al (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151. https://doi.org/10.1016/J.CEP.2009.03.006

    Article  Google Scholar 

  105. Nadzir SM, Yusof N, Nordin N et al (2018) Combination effect of temperature and light intensity on lipid productivity of Tetradesmus obliquus. J Phys Conf Ser 1097:012038. https://doi.org/10.1088/1742-6596/1097/1/012038

    Article  Google Scholar 

  106. Hwangbo M, Chu KH (2020) Recent advances in production and extraction of bacterial lipids for biofuel production. Sci Total Environ 734:139420

    Article  Google Scholar 

  107. Bradley T, Maga D (2019) Life cycle analysis of producing microbial lipids and biodiesel: comparison with plant lipids. In: Methods in Molecular Biology. Humana Press Inc., pp 195–214

  108. Parsons S, Chuck CJ, McManus MC (2018) Microbial lipids: progress in life cycle assessment (LCA) and future outlook of heterotrophic algae and yeast-derived oils. J Clean Prod 172:661–672

    Article  Google Scholar 

  109. Kargbo DM (2010) Biodiesel production from municipal sewage sludges. Energy Fuels 24:2791–2794. https://doi.org/10.1021/EF1001106

    Article  Google Scholar 

  110. Khushboo K, Rashmi R, Raj M et al (2017) Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. Bioresour Technol 245:743–750. https://doi.org/10.1016/J.BIORTECH.2017.08.194

    Article  Google Scholar 

  111. Heo HY, Heo S, Lee JH (2019) Comparative techno-economic analysis of transesterification technologies for microalgal biodiesel production. Ind Eng Chem Res 58:18772–18779. https://doi.org/10.1021/ACS.IECR.9B03994

    Article  Google Scholar 

  112. Rubio Rodríguez MA, De RJ, Díaz PR et al (2011) An LCA based indicator for evaluation of alternative energy routes. Appl Energy 88:630–635

    Article  Google Scholar 

  113. Karamerou EE, Webb C (2019) Cultivation modes for microbial oil production using oleaginous yeasts – a review. Biochem Eng J 151:107322. https://doi.org/10.1016/j.bej.2019.107322

    Article  Google Scholar 

  114. Onwosi CO, Aliyu GO, Onu CJ et al (2021) Microbial-derived glycolipids in the sustainable formulation of biomedical and personal care products: a consideration of the process economics towards commercialization. Process Biochem 100:124–139

    Article  Google Scholar 

  115. Ochsenreither K, Glück C, Stressler T et al (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539

    Article  Google Scholar 

  116. Wayne LL, Gachotte DJ, Walsh TA (2019) Transgenic and genome editing approaches for modifying plant oils. In: Methods in molecular biology. Humana Press Inc., pp 367–394

  117. Bellou S, Triantaphyllidou IE, Aggeli D et al (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35. https://doi.org/10.1016/J.COPBIO.2015.09.005

    Article  Google Scholar 

  118. Granot E, Ishay-Gigi K, Malaach L, Flidel-Rimon O (2015) Is there a difference in breast milk fatty acid composition of mothers of preterm and term infants? J Matern Fetal Neonatal Med 29:832–835. https://doi.org/10.3109/14767058.2015.1020785

    Article  Google Scholar 

  119. Siepmann J, Faham A, Clas SD et al (2019) Lipids and polymers in pharmaceutical technology: lifelong companions. Int J Pharm 558:128–142. https://doi.org/10.1016/J.IJPHARM.2018.12.080

    Article  Google Scholar 

  120. Vivek N, Sindhu R, Madhavan A et al (2017) Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate – metabolic aspects, challenges and possibilities: an overview. Bioresour Technol 239:507–517

    Article  Google Scholar 

  121. Szymanowska-Powałowska D, Leja K (2014) An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. Electron J Biotechnol 17:72–78. https://doi.org/10.1016/j.ejbt.2013.12.010

    Article  Google Scholar 

  122. Xin B, Wang Y, Tao F, et al (2016) Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Sci Rep 6https://doi.org/10.1038/srep19044

  123. Yang T, Rao Z, Zhang X et al (2015) Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact 14:122. https://doi.org/10.1186/s12934-015-0317-2

    Article  Google Scholar 

  124. Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Reports 9:9–14

    Article  Google Scholar 

  125. Black CS, Nair GR (2013) Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter Xylinus cells. Int J Chem Eng Appl 310–314https://doi.org/10.7763/ijcea.2013.v4.316

  126. Liu YP, Sun Y, Tan C et al (2013) Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Bioresour Technol 142:384–389. https://doi.org/10.1016/j.biortech.2013.05.055

    Article  Google Scholar 

  127. Ahmad A, Ahsan H (2020) Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomed Dermatology 4:1–10. https://doi.org/10.1186/s41702-020-00062-9

    Article  Google Scholar 

  128. Aslam A, Bahadar A, Liaquat R et al (2021) Algae as an attractive source for cosmetics to counter environmental stress. Sci Total Environ 772:144905

    Article  Google Scholar 

  129. Yarkent Ç, Gürlek C, Oncel SS (2020) Potential of microalgal compounds in trending natural cosmetics: a review. Sustain. Chem. Pharm. 17

  130. Mobin SMA, Chowdhury H, Alam F (2019) Commercially important bioproducts from microalgae and their current applications-a review. In: Energy Procedia. Elsevier Ltd, pp 752–760

  131. Fu W, Nelson DR, Yi Z, et al (2017) Bioactive compounds from microalgae: current development and prospects. In: Studies in natural products chemistry. Elsevier B.V., pp 199–225

  132. Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F et al (2017) A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res 26:312–322. https://doi.org/10.1016/j.algal.2017.08.016

    Article  Google Scholar 

  133. Bhatia SK, Yi DH, Kim YH et al (2015) Development of semi-synthetic microbial consortia of Streptomyces coelicolor for increased production of biodiesel (fatty acid methyl esters). Fuel 159:189–196. https://doi.org/10.1016/j.fuel.2015.06.084

    Article  Google Scholar 

  134. Misra N, Panda PK, Parida BK (2013) Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link omics to bioenergy and bioeconomy. Omi A J Integr Biol 17:537–549

    Article  Google Scholar 

  135. De Bhowmick G, Sarmah AK, Sen R (2019) Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ 650:2467–2482

    Article  Google Scholar 

  136. Yadav G, Sekar M, Kim SH et al (2021) Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production. Bioresour Technol 325:124654. https://doi.org/10.1016/j.biortech.2020.124654

    Article  Google Scholar 

  137. Bhatia SK, Gurav R, Choi TR et al (2019) Effect of synthetic and food waste-derived volatile fatty acids on lipid accumulation in Rhodococcus sp. YHY01 and the properties of produced biodiesel. Energy Convers Manag 192:385–395. https://doi.org/10.1016/j.enconman.2019.03.081

    Article  Google Scholar 

  138. Gupta D, Singh A, Sharma A, Nigam A (2013) Processing of biofuels. In: Biofuels production. wiley, pp 59–84

  139. Bugarski AD, Hummer JA, Vanderslice SE (2017) Effects of FAME biodiesel and HVORD on emissions from an older-technology diesel engine. Min Eng 69:43–49. https://doi.org/10.19150/me.7918

    Article  Google Scholar 

  140. Mizik T, Gyarmati G (2021) Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Clean Technol 3:19–36. https://doi.org/10.3390/cleantechnol3010002

  141. Wan Omar WNN, Nordin N, Mohamed M, Amin NAS (2009) A two-step biodiesel production from waste cooking oil: optimization of pre-treatment step. J Appl Sci 9:3098–3103. https://doi.org/10.3923/jas.2009.3098.3103

    Article  Google Scholar 

  142. E. P. Godbole KCD (2016) Review of production of biofuels. IOSR J Biotechnol Biochem 2:62–69

  143. Thangaraj B, Solomon PR, Muniyandi B et al (2019) Catalysis in biodiesel production - a review. Clean Energy 3:2–23

    Article  Google Scholar 

  144. Johar S, Norton K Innovative Canadian process technology for biodiesel production

  145. Gerpen J Van, Shanks B, Pruszko R, et al (2004) Biodiesel production technology: August 2002--January 2004

  146. Lasse Rosendahl (2012) Biomass combustion science, technology and engineering — Aalborg University’s Research Portal. In: Elsevier. https://vbn.aau.dk/en/publications/biomass-combustion-science-technology-and-engineering. Accessed 18 Jun 2021

  147. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  Google Scholar 

  148. Takkellapati S, Li T, Gonzalez MA (2018) An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy 20:1615–1630. https://doi.org/10.1007/s10098-018-1568-5

    Article  Google Scholar 

  149. Kourmentza C, Plácido J, Venetsaneas N, et al (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4

  150. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446. https://doi.org/10.1039/b812677c

    Article  Google Scholar 

  151. Sims REH, Mabee W, Saddler JN, Taylor M (2009) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046

    Article  Google Scholar 

  152. Hong AA, Cheng KK, Peng F et al (2009) Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biotechnol 84:1576–1581. https://doi.org/10.1002/jctb.2209

    Article  Google Scholar 

  153. Chi Z, Pyle D, Wen Z et al (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008

    Article  Google Scholar 

  154. Liu Y, Zhang Y-G, Zhang R-B et al (2010) (2010) Glycerol/glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici. Curr Microbiol 621(62):152–158. https://doi.org/10.1007/S00284-010-9683-5

    Article  Google Scholar 

  155. Himmi EH, Bories A, Boussaid A, Hassani L (2000) Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Appl Microbiol Biotechnol 53:435–440. https://doi.org/10.1007/s002530051638

    Article  Google Scholar 

  156. Chen XZ, Tian KM, Niu DD et al (2014) Efficient bioconversion of crude glycerol from biodiesel to optically pure d-lactate by metabolically engineered Escherichia coli. Green Chem 16:342–350. https://doi.org/10.1039/c3gc41769g

    Article  Google Scholar 

  157. Cheon Lee P, Gi Lee W, Yup Lee S, Nam Chang H (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source

  158. Pinazo JM, Domine ME, Parvulescu V, Petru F (2015) Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal Today 239:17–24. https://doi.org/10.1016/j.cattod.2014.05.035

    Article  Google Scholar 

  159. Morgunov IG, Kamzolova SV (2015) Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry. Appl Microbiol Biotechnol 99:6443–6450. https://doi.org/10.1007/s00253-015-6558-5

    Article  Google Scholar 

  160. Cordova LT, Lad BC, Ali SA et al (2020) Valorizing a hydrothermal liquefaction aqueous phase through co-production of chemicals and lipids using the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 313:123639. https://doi.org/10.1016/j.biortech.2020.123639

    Article  Google Scholar 

  161. Rodríguez-Villalón A, Pérez-Gil J, Rodríguez-Concepción M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135:78–84. https://doi.org/10.1016/j.jbiotec.2008.02.023

    Article  Google Scholar 

  162. Berthon JY, Nachat-Kappes R, Bey M et al (2017) Marine algae as attractive source to skin care. Free Radic Res 51:555–567

    Article  Google Scholar 

  163. Olatunde A, Tijjani H, Ishola AA, et al (2020) Carotenoids as functional bioactive compounds. In: Functional foods and nutraceuticals. Springer International Publishing, pp 415–444

  164. Mezzomo N, Ferreira SRS (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J. Chem. 2016

  165. Yolmeh M, Khomeiri M (2017) Effect of mutagenesis treatment on antimicrobial and antioxidant activities of pigments extracted from Rhodotorula glutinis. Biocatal Agric Biotechnol 10:285–290. https://doi.org/10.1016/j.bcab.2017.04.007

    Article  Google Scholar 

  166. Barreiro C, Barredo JL (2018) Carotenoids production: a healthy and profitable industry. In: Methods in molecular biology. Humana Press Inc., pp 45–55

  167. Freitas C, Parreira TM, Roseiro J et al (2014) Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry. Bioresour Technol 158:355–359. https://doi.org/10.1016/j.biortech.2014.02.071

    Article  Google Scholar 

  168. Lee JJL, Chen L, Cao B, Chen WN (2016) Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture. Appl Microbiol Biotechnol 100:869–877. https://doi.org/10.1007/s00253-015-7102-3

    Article  Google Scholar 

  169. Singh G, Jawed A, Paul D, et al (2016) Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology. Front Microbiol 7https://doi.org/10.3389/fmicb.2016.01686

  170. da Silva J, Honorato da Silva FL, Santos Ribeiro JE et al (2020) Effect of supplementation, temperature and pH on carotenoids and lipids production by Rhodotorula mucilaginosa on sisal bagasse hydrolyzate. Biocatal Agric Biotechnol 30:101847. https://doi.org/10.1016/j.bcab.2020.101847

    Article  Google Scholar 

  171. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  Google Scholar 

  172. Gong Y, Huang J (2020) Characterization of four untapped microalgae for the production of lipids and carotenoids. Algal Res 49https://doi.org/10.1016/j.algal.2020.101897

  173. Lakhtar H, Ismaili-Alaoui M, Philippoussis A et al (2010) Screening of strains of Lentinula edodes grown on model olive mill wastewater in solid and liquid state culture for polyphenol biodegradation. Int Biodeterior Biodegrad 64:167–172. https://doi.org/10.1016/j.ibiod.2009.10.006

    Article  Google Scholar 

  174. Papadaki A, Kachrimanidou V, Papanikolaou S, et al (2019) Upgrading grape pomace through pleurotus spp. Cultivation for the production of enzymes and fruiting bodies. Microorganisms 7 https://doi.org/10.3390/microorganisms7070207

  175. Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  Google Scholar 

  176. Pagliano G, Ventorino V, Panico A, Pepe O (2017) Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels 10:113

    Article  Google Scholar 

  177. Hori K, Marsudi S, Unno H (2002) Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol Bioeng 78:699–707. https://doi.org/10.1002/bit.10248

    Article  Google Scholar 

  178. Siriwardhana N, Kalupahana NS, Moustaid-Moussa N (2012) Health benefits of n-3 polyunsaturated fatty acids. Eicosapentaenoic acid and docosahexaenoic acid. In: Advances in food and nutrition research. Academic Press Inc., pp 211–222

  179. Xu Z, Pan C, Li X, et al (2021) Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. Biotechnol Biofuels 14https://doi.org/10.1186/s13068-020-01861-2

  180. Asiri F, Chen CH, Hwangbo M et al (2020) From organic wastes to bioplastics: feasibility of nonsterile poly(3-hydroxybutyrate) production by Zobellella denitrificans ZD1. ACS Omega 5:24158–24168. https://doi.org/10.1021/acsomega.9b04002

    Article  Google Scholar 

  181. Kucera D, Pernicová I, Kovalcik A et al (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol 256:552–556. https://doi.org/10.1016/j.biortech.2018.02.062

    Article  Google Scholar 

  182. Hand S, Gill J, Chu KH (2016) Phage-based extraction of polyhydroxybutyrate (PHB) produced from synthetic crude glycerol. Sci Total Environ 557–558:317–321. https://doi.org/10.1016/j.scitotenv.2016.03.089

    Article  Google Scholar 

  183. Levasseur W, Perré P, Pozzobon V (2020) A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 41:107545

    Article  Google Scholar 

  184. Hou CT (2008) Production of arachidonic acid and dihomo-γ-linolenic acid from glycerol by oil-producing filamentous fungi, Mortierella in the ARS culture collection. J Ind Microbiol Biotechnol 35:501–506. https://doi.org/10.1007/s10295-008-0308-y

    Article  Google Scholar 

  185. Lee Chang KJ, Dumsday G, Nichols PD et al (2013) High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Appl Microbiol Biotechnol 97:6907–6918. https://doi.org/10.1007/s00253-013-4965-z

    Article  Google Scholar 

  186. Amara S, Seghezzi N, Otani H et al (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:1–13. https://doi.org/10.1038/srep24985

    Article  Google Scholar 

  187. Lenneman EM, Ohlert JM, Palani NP, Barney BM (2013) Fatty alcohols for wax esters in Marinobacter aquaeolei VT8: two optional routes in the wax biosynthesis pathway. Appl Environ Microbiol 79:7055–7062. https://doi.org/10.1128/AEM.02420-13

    Article  Google Scholar 

  188. Kamat S, Khot M, Zinjarde S et al (2013) Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol 135:246–253. https://doi.org/10.1016/j.biortech.2012.11.059

    Article  Google Scholar 

  189. Pradima J, KulkarniArchna MR (2017) Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production. Resour Technol 3:394–405. https://doi.org/10.1016/j.reffit.2017.02.009

    Article  Google Scholar 

  190. Kaur J, Sarma AK, Jha MK, Gera P (2020) Valorisation of crude glycerol to value-added products: perspectives of process technology, economics and environmental issues. Biotechnol Rep 27:e00487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soumya Pandit or Sanket Joshi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Banerjee, S., Pandit, S. et al. A comprehensive review on enhanced production of microbial lipids for high-value applications. Biomass Conv. Bioref. 13, 15357–15380 (2023). https://doi.org/10.1007/s13399-021-02008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02008-5

Keywords

Navigation