Skip to main content
Log in

Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation bySaccharomyces cerevisiae

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bagasse, corn cob, and rice straw agricultural wastes were found to consist of 37, 39 and 34% cellulose and 24, 41 and 22% hemicellulose, respectively, on a dry solid (w/w) basis and thus have the potential to serve as a low cost foodstock for ethanol production. Hydrolysates produced by dilute-acid pretreatment followed by cellulase digestion were evaluated as substrates for ethanol fermentation bySaccharomyces cerevisiae. After pretreatment by 141 mM sulphuric acid, bagasse waste released glucose (134 mg/g) at a higher level than that from corn cob (75 mg/g) and rice straw (8 mg/g). Hydroxymethylfurfural (HMF) levels derived from acid pretreatment of bagasse (1.5 g/l), but not corn cob (0.8 g/l) or rice straw (0.1 g/l) attained levels likely to be toxic (1.5 g/l) forS. cerevisiae growth and ethanol fermentation rates. All three agricultural wastes released likely non-toxic levels of furfural (<0.5 g/l) and lactic acid (negligible for bagasse and rice straw and 0.7 g/l for corn cob). After cellulase saccharification of the dilute-acid pretreated agricultural wastes, the glucose content of corn cob hydrolysates (13 ± 0.17 g/l) was marginally higher than that of bagasse (12 ±0.27 g/l) or rice straw (11 ± 0.07 g/l), yet the ethanol conversion yield byS. cerevisiae on corn cob hydrolysate (0.45 ± 0.006 g/g) was lower than that attained with bagasse hydrolysate (0.49 ± 0.007 g/g). Synergistic adverse effects between furfural and HMF with weak acids, or other lignin derived products in the corn cob hydrolysate are proposed as the effective inhibitor (s) for ethanol fermentation byS. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves L.A., Felipe M.C.A., Silva J.B., Prata A.M.R. (1998). Pretreatment of sugarcane bagasse hemicellulose hydrolyzate for xylitol production byCandida guilliermondii. Appl. Biochem. Biotechnol., 70–72: 89–98.

    Article  Google Scholar 

  • Banerjee N., Bhatnagnar R., Viswanathan L. (1981). Inhibition of glycolysis by furfural inSaccharomyces cerevisiae. Eur. J. Appl. Microbiol. Biotechnol., 11: 226–228.

    Article  CAS  Google Scholar 

  • Davis L., Jeon Y.-J., Svenson C., Rogers P., Pearce J., Peiris P. (2005). Evaluation of wheat stillage for ethanol production by recombinantZymomonas mobilis. Biomass Bioenerg., 29: 49–59.

    Article  CAS  Google Scholar 

  • Delgenes J.P., Moletta R., Navarro J.M. (1996). Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose bySaccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, andCandida shehatae. Enzyme Microb. Technol., 19: 220–225.

    Article  CAS  Google Scholar 

  • Dien B.S., Nichols N.N., O’Bryan P.J., Bothast R.J. (2000). Development of new ethanologenicEscherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotechnol., 84–86: 181–186.

    Article  PubMed  Google Scholar 

  • Ghose T.K. (1987). Measurement of cellulase activities (Recommendations of Commission on Biotechnology IUPAC). Pure Appl. Chem., 59: 257–268.

    Article  CAS  Google Scholar 

  • Hinman N.D., Schell D.J., Riley C.J., Bergeron, P.W. Walter, D.J. (1992). Preliminary estimate of the cost of ethanol production for SSF technology. Appl. Biochem. Biotechnol., 34–35: 639–649.

    Article  Google Scholar 

  • Ho N.W.Y., Chen Z., Brainard A.P. (1998). Genetically engineeredSaccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Env. Microbiol., 64 (5): 1852–1859.

    CAS  Google Scholar 

  • Karimi K., Emtiazi G., Taherzadah M.J. (2006). Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate byMucor indicus. Process Biochem., 41: 653–658.

    Article  CAS  Google Scholar 

  • Kongruang S., Han M.J., Breton C.I., Penner, M.H. (2004). Quantitative analysis of cellulose-reducing ends. Appl. Biochem. Biotechnol., 113–116: 213–231.

    Article  PubMed  Google Scholar 

  • McCarthy J.E., and Tiemann M. (1998). CRS report for congress. MTBE in gasoline: clean air and drinking water issues. Available from http://www.epa.gov/otaq /consumer/fuels/mtbe/crsmtbe.pdf.

  • McMillan J.D. (1994). Pretreatment of lignocellulosic biomass. In: Himmel M.E., Barker J.O., Overend R.P., Eds, Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC, pp. 292–324.

    Chapter  Google Scholar 

  • Miller G.L. (1959). Use of dinitrosalicylic reagent for the determination of reducing sugar. Anal. Chem., 31: 426–428.

    Article  CAS  Google Scholar 

  • Mussatto S.I., Roberto I.C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technol., 93: 1–10.

    Article  CAS  Google Scholar 

  • Nguyen Q.A., Tucker, M.P. Boynton, B.L. Keller, F.A. Schell, D.J. (1998). Dilute acid pretreatment of softwoods-scientific note. Appl. Biochem. Biotech., 7092: 77–87.

    Article  Google Scholar 

  • Nigam J.N., (2002). Bioconversion of water-hyacinth(Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol., 97: 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E., Hanh-Hagerdal B. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol., 74: 17–24.

    Article  CAS  Google Scholar 

  • Pampulha M.E., Loureiro V. (1989). Interaction of the effects of. acetic acid and ethanol on inhibition of fermentation inSaccharomyces cerevisiae. Biotechnol. Lett., 2: 269–274.

    Article  Google Scholar 

  • Parajo J.C., Dominguez H., Dominguez J.M. (1998). Biotechnological producation of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresource Technol., 66: 25–40.

    Article  CAS  Google Scholar 

  • Saha B.C., Iten L.B., Cotta M.A., Wu Y.V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem., 40: 3693–3700.

    Article  CAS  Google Scholar 

  • Sternberg D., Vijaykumar P., Reese E.T. (1977). β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol., 23: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y., Cheng J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol., 83: 1–11.

    Article  CAS  Google Scholar 

  • Szczodrak J., Fiedurek J. (1995). Technology for the conversion of lignocellulosic biomass to ethanol. Biomass Bioenerg., 10 (5/6): 367–375.

    Google Scholar 

  • TAPPI — Technical Association of Pulp and Paper Industry (1988). Test method for determination of alpha-beta and gamma-cellulose in pulp. TAPPI 203 om-88.

  • Wang M., Saricks C., Santini D. (1999). Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions. Argonne National Laboratory, Argonne, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ancharida Akaracharanya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumphanwanich, J., Leepipatpiboon, N., Srinorakutara, T. et al. Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation bySaccharomyces cerevisiae . Ann. Microbiol. 58, 219–225 (2008). https://doi.org/10.1007/BF03175320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175320

Key words

Navigation