Skip to main content
Log in

Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Lignin-derived phenolic compounds can be extracted from oak barrels during the aging of red wine, and it is hypothesized that these compounds may contribute to the health benefits of red wine by their antioxidant, radical-scavenging, or chemopreventive activities. Density functional calculations (B3LYP/6-311++G**) support the radical-scavenging abilities of the oak phenolics. Sinapaldehyde, syringaldehyde, syringol, and syringylacetone all have bond dissociation energies that are lower than resveratrol and comparable to the flavonoid catechin. Molecular docking studies of the oak phenolics with known resveratrol protein targets also show that these compounds dock favorably to the protein targets. Thus, lignin-derived oak phenolics, although found in small concentrations, may contribute to the beneficial antioxidant, chemopreventive, and cardioprotective effects of red wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Soleas GJ, Diamandis EP, Goldberg DM (1997) J Clin Lab Anal 11:287–313

    Article  CAS  Google Scholar 

  2. Tomera JF (1999) Trends Food Sci Technol 10:129–138

    Article  CAS  Google Scholar 

  3. German JB, Walzem RL (2000) Annu Rev Nutr 20:561–593

    Article  CAS  Google Scholar 

  4. Cooper KA, Chopra M, Thurnham DI (2004) Nutr Res Rev 17:111–129

    Article  CAS  Google Scholar 

  5. Frankel EN, Waterhouse AL, Teissedre PL (1995) J Agric Food Chem 43:890–894

    Article  CAS  Google Scholar 

  6. Prasongsidh BC, Skurray GR (1998) Food Chem 62:355–358

    Article  CAS  Google Scholar 

  7. Stervbo U, Vang O, Bonnesen C (2007) Food Chem 101:449–457

    Article  CAS  Google Scholar 

  8. Frankel EN, German JB, Kinsella JE, Parks E, Kanner J (1993) Lancet 341:454–457

    Article  CAS  Google Scholar 

  9. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Durán N (2003) Food Chem 82:409–416

    Article  CAS  Google Scholar 

  10. López-Vélez M, Martínez-Martínez F, Del Valle-Ribes C (2003) Crit Rev Food Sci Nutr 43:233–244

    Google Scholar 

  11. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Science 275:218–220

    Article  CAS  Google Scholar 

  12. Ray PS, Maulik G, Cordis GA, Bertelli AAE, Bertelli A, Das DK (1999) Free Radic Biol Med 27:160–169

    Article  CAS  Google Scholar 

  13. Orallo F, Álvarez E, Camiña M, Leiro JM, Gómez E, Fernández P (2002) Mol Pharmacol 61:294–302

    Article  CAS  Google Scholar 

  14. Donnelly LE, Newton R, Kennedy GE, Fenwick PS, Leung RHF, Ito K, Russell REK, Barnes PJ (2004) Am J Physiol Lung Cell Mol Physiol 287:L774–L783

    Article  CAS  Google Scholar 

  15. Alarcón de la Lastra C, Villegas I (2005) Mol Nutr Food Res 49:405–430

    Article  Google Scholar 

  16. Kundu JK, Surh YJ (2008) Cancer Lett 269:243–261

    Article  CAS  Google Scholar 

  17. Pirola L, Fröjdö S (2008) IUBMB Life 60:323–332

    Article  CAS  Google Scholar 

  18. Lappano R, Rosano C, Madeo A, Albanito L, Plastina P, Gabriele B, Forti L, Stivala LA, Iacopetta D, Dolce V, Andò S, Pezzi V, Maggiolini M (2009) Molec Nutr Food Res 53:845–858

    Article  CAS  Google Scholar 

  19. Dayangaç-Erden D, Bora G, Ayhan P, Kocaefe Ç, Dalkara S, Yelekçi K, Demir AS, Erdem-Yurter H (2009) Chem Biol Drug Des 73:355–364

    Article  Google Scholar 

  20. Szewczuk LM, Forti L, Stivala LA, Penning TM (2004) J Biol Chem 279:22727–22737

    Article  CAS  Google Scholar 

  21. Candelario-Jalil E, De Oliveira AC, Gräf S, Bhatia HS, Hüll M, Muñoz E, Fiebich BL (2007) J Neuro inflammation 4:25

    Google Scholar 

  22. Zykova TA, Zhu F, Zhai X, Ma WY, Ermakova SP, Lee KW, Bode AM, Dong Z (2008) Mol Carcinog 47:797–805

    Article  CAS  Google Scholar 

  23. Fröjdö S, Cozzone D, Vidal H, Pirola L (2007) Biochem J 406:511–518

    Article  Google Scholar 

  24. Ulrich S, Huwiler A, Loitsch S, Schmidt H, Stein JM (2007) Biochem Pharmacol 74:281–289

    Article  CAS  Google Scholar 

  25. Rossi M, Caruso F, Opazo C, Salciccioli J (2008) J Agric Food Chem 56:10557–10566

    Article  CAS  Google Scholar 

  26. MacCarrone M, Lorenzon T, Guerrieri P, Agro AF (1999) Eur J Biochem 265:27–34

    Article  CAS  Google Scholar 

  27. Wang, Lee KW, Chan FL, Chen S, Leung LK (2006) Toxicol Sci 92:71–77

    Article  CAS  Google Scholar 

  28. Neves MA, Dinis TC, Colombo G, Sa EMML (2007) ChemMedChem 2:1750–1762

    Article  CAS  Google Scholar 

  29. Tsai SH, Lin-Shiau SY, Kin JK (1999) Br J Pharmacol 126:673–680

    Article  CAS  Google Scholar 

  30. Fontecave M, Lepoivre M, Elleingand E, Gerez C, Guittet O (1998) FEBS Lett 421:277–279

    Article  CAS  Google Scholar 

  31. Buryanovsky L, Fu Y, Boyd M, Ma Y, Hsieh TC, Wu JM, Zhang Z (2004) Biochemistry 43:11417–11426

    Article  Google Scholar 

  32. Yu R, Hebbar V, Kim DW, Mandlekar S, Pezzuto JM, Kong ANT (2001) Mol Pharmacol 60:217–224

    CAS  Google Scholar 

  33. Davies DR, Mamat B, Magnusson OT, Christensen J, Haraldsson MH, Mishra R, Pease B, Hansen E, Singh J, Zembower D, Kim H, Kiselyov AS, Burgin AB, Gurney ME, Stewart LJ (2009) J Med Chem 52:4694–4715

    Article  CAS  Google Scholar 

  34. Gledhill JR, Montgomery MG, Leslie AGW, Walker JE (2007) Proc Nat Acad Sci USA 104:13632–13637

    Article  CAS  Google Scholar 

  35. Allali-Hassani A, Pan PW, Dombrovski L, Najmanovich R, Tempel W, Dong A, Loppnau P, Martin F, Thonton J, Edwards AM, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH (2007) PLoS Biology 5(e97):1063–1078

    CAS  Google Scholar 

  36. Jarauta I, Cacho J, Ferreira V (2005) J Agric Food Chem 53:4166–4177

    Article  CAS  Google Scholar 

  37. Bosso A, Petrozziello M, Santini D, Motta S, Guaita M, Marulli C (2008) J Food Sci 73:S373–S382

    Article  CAS  Google Scholar 

  38. Fernández de Simón B, Cadahía E, Sanz M, Poveda P, Perez-Magariño S, Ortega-Heras M, González-Huerta C (2008) J Agric Food Chem 56:9046–9055

    Article  Google Scholar 

  39. Natali N, Chinnici F, Riponi C (2006) J Agric Food Chem 54:8190–8198

    Article  CAS  Google Scholar 

  40. Vichi S, Santini C, Natali N, Riponi C, López-Tamames E, Buxaderas S (2007) Food Chem 102:1260–1269

    Article  CAS  Google Scholar 

  41. Fernández de Simón B, Esteruelas E, Muñoz AM, Cadahía E, Sanz M (2009) J Agric Food Chem 57:3217–3227

    Article  Google Scholar 

  42. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Bioresour Technol 95:309–317

    Article  CAS  Google Scholar 

  43. Bortolomeazzi R, Sebastianutto N, Toniolo R, Pizzariello A (2007) Food Chem 100:1481–1489

    Article  CAS  Google Scholar 

  44. Ao C, Li A, Elzaawely AA, Xual TD, Tawata S (2008) Food Control 19:940–948

    Article  CAS  Google Scholar 

  45. Loo AY, Jain K, Darah I (2008) Food Chem 107:1151–1160

    Article  CAS  Google Scholar 

  46. Bountagkidou OG, Ordoudi SA, Tsimidou MZ (2010) Food Res Int 43:2014–2019

    Article  CAS  Google Scholar 

  47. Wavefunction, Inc. (2008) Spartan ’08 for Windows, v.1.2. Wavefunction, Inc., Irvine

  48. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  50. Hehre WJ, Radom L, PvR S (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  51. Eiler S, Gangloff M, Duclaud S, Moras D, Ruff M (2001) Protein Expr Purif 22:165–173

    Article  CAS  Google Scholar 

  52. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) Cell 95:927–937

    Article  CAS  Google Scholar 

  53. Nettles KW, Bruning JB, Gil G, Nowak J, Sharma SK, Hahm JB, Kulp K, Hochberg RB, Zhou H, Katzenellenbogen JA, Katzenellenbogen BS, Kim Y, Joachmiak A, Greene GL (2008) Nat Chem Biol 4:241–247

    Article  CAS  Google Scholar 

  54. Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, Luong C, Arvai A, Buggy JJ, Chi E, Tang J, Sang BC, Verner E, Wynands R, Leahy EM, Dougan DR, Snell G, Navre M, Knuth MW, Swanson RV, McRee DE, Tari LW (2004) Structure 12:1325–1334

    Article  CAS  Google Scholar 

  55. Dowling DP, Gattis SG, Fierke CA, Christianson DW (2010) Biochemistry 49:5048–5056

    Article  CAS  Google Scholar 

  56. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkühler C, Di Marco S (2004) Proc Nat Acad Sci USA 101:15064–15069

    Article  CAS  Google Scholar 

  57. Selinsky BS, Gupta K, Sharkey CT, Loll PJ (2001) Biochemistry 40:5172–5180

    Article  CAS  Google Scholar 

  58. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Nature 384:644–648

    Article  CAS  Google Scholar 

  59. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Rückle T, Schwarz MK, Shokat KM, Shaw JP, Williams RL (2010) Nat Chem Biol 6:117–124

    Article  CAS  Google Scholar 

  60. Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA, Hackert ML (2000) J Mol Biol 295:7–16

    Article  CAS  Google Scholar 

  61. Dufe VT, Ingner D, Heby O, Khomutov AR, Persson L, Al-Karadaghi S (2007) Biochem J 405:261–268

    Article  CAS  Google Scholar 

  62. Trivella DB, Bleicher L, Palmieri LdeC, Wiggers HJ, Montanari CA, Kelly JW, Lima LM, Foguel D, Polikarpov I (2010) J Struct Biol 170:522–531

    Article  CAS  Google Scholar 

  63. Choi S, Reixach N, Connelly S, Johnson SM, Wilson IA, Kelly JW (2010) J Am Chem Soc 132:1359–1370

    Article  CAS  Google Scholar 

  64. Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC (2000) Nat Struct Biol 7:312–321

    Article  CAS  Google Scholar 

  65. Skrzypczak-Jankun E, Zhou K, Jankun J (2003) Int J Mol Med 12:415–420

    CAS  Google Scholar 

  66. Ghosh D, Griswold J, Erman M, Pangborn W (2009) Nature 457:219–223

    Article  CAS  Google Scholar 

  67. Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, St-Gallay SA, Tinker AC, Gensmantel NP, Mete A, Cheshire DR, Connolly S, Stuehr DJ, Åberg A, Wallace AV, Tainer JA, Getzoff ED (2008) Nat Chem Biol 4:700–707

    Article  CAS  Google Scholar 

  68. Maiti A, Reddy PV, Sturdy M, Marler L, Pegan SD, Mesecar AD, Pezzuto JM, Cushman M (2009) J Med Chem 52:1873–1884

    Google Scholar 

  69. Calamini B, Santarsiero BD, Boutin JA, Mesecar AD (2008) Biochem J 413:81–91

    Google Scholar 

  70. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Nat Chem Biol 4:691–699

    Google Scholar 

  71. Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH (1999) J Mol Biol 285:713–725

    Google Scholar 

  72. Statsuk AV, Maly DJ, Seeliger MA, Fabian MA, Biggs WH, Lockhart DJ, Zarrinkar PP, Kuriyan J, Shokat KM (2008) J Am Chem Soc 130:17568–17574

    Google Scholar 

  73. Wagner J, von Matt P, Sedrani R, Albert R, Cooke N, Ehrhardt C, Geiser M, Rummel G, Stark W, Strauss A, Cowan-Jacob SW, Beerli C, Weckbecker G, Evenou JP, Zenke G, Cottens S (2009) J Med Chem 52:6193–6196

    Google Scholar 

  74. Molegro ApS (2009) Molegro Virtual Docker v.4.0. Molegro ApS, Aarhus

  75. Thomsen R, Christensen MH (2006) J Med Chem 49:3315–3321

    Google Scholar 

  76. Croft KD (1998) Ann NY Acad Sci 854:435–442

    Google Scholar 

  77. Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM (2001) Am J Clin Nutr 74:418–425

    Google Scholar 

  78. Masuda T, Akiyama J, Takeda Y, Maekawa T, Sone Y (2009) Biosci Biotechnol Biochem 73:736–739

    Google Scholar 

  79. Thavasi V, Leong LP, Bettens RPA (2006) J Phys Chem A 110:4918–4923

    Google Scholar 

  80. Leopoldini M, Russo N, Toscano M (2007) J Agric Food Chem 55:7944–7949

    Google Scholar 

  81. Zhang J, Du F, Peng B, Lu R, Gao H, Zhou Z (2010) J Mol Struct THEOCHEM 955:1–6

    Google Scholar 

  82. Nenadis N, Sigalas MP (2008) J Phys Chem A 112:12196–12202

    Google Scholar 

  83. Mikulski D, Górniak R, Molski M (2010) Eur J Med Chem 45:1015–1027

    Google Scholar 

  84. Stanikunaite R, Khan SI, Trappe JM, Ross SA (2009) Phytother Res 23:575–578

    Google Scholar 

  85. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Med Res Rev 23:519–534

  86. Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS (2002) Cancer Res 62:165–170

    Google Scholar 

  87. Thangapandian S, John S, Sakkiah S, Lee KW (2010) Eur J Med Chem 45:4409–4417

    Google Scholar 

  88. Chen X, Wang S, Wu N, Yang CS (2004) Curr Cancer Drug Targets 4:267–283

    Google Scholar 

  89. Brueggemeier RW, Hackett JC, Diaz-Cruz ES (2005) Endocr Rev 26:331–345

    Google Scholar 

  90. de Gaetano G, Donati MB, Cerletti C (2003) Trends Pharmacol Sci 24:245–252

    Google Scholar 

  91. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Mediators Inflamm 2007:45673

  92. Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF (2007) Cardiovasc Res 76:473–481

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N. Setzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setzer, W.N. Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J Mol Model 17, 1841–1845 (2011). https://doi.org/10.1007/s00894-010-0893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0893-3

Keywords

Navigation