Skip to main content
Log in

Using Ge Secondary Phases to Enhance the Power Factor and Figure of Merit of Ge17Sb2Te20

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric materials are the leading candidate today for applications in solid-state waste-heat recovery/cooling applications. Research and engineering has pushed the ZT, and overall conversion efficiency, of these materials to values which can be deemed practical for commercialization. However, many of the state-of-the-art thermoelectric materials of today utilize elements which are toxic, such as Ag, Pb, Tl, and Cd. Alloys of GeTe and Sb2Te3 were first explored for their applications in phase-change memory, because of their ability to rapidly alternate between crystalline and amorphous phases. Recently, these materials have been identified as materials with ZT (S 2 T/ρκ, where S is the Seebeck coefficient, ρ is the electrical resistivity, T is the operating temperature, and κ is the thermal conductivity) much greater than unity. In this work, the influence of elemental Ge as a secondary phase on transport in Ge17Sb2Te20 was explored. It was found that Ge introduces an additional scattering mechanism, which leads to increased electrical resistivity, Seebeck coefficient, and power factor values as high as 36 μW cm−1 K−2. The thermal conductivity was slightly reduced and the ZT was enhanced across the entire temperature range of measurement, with peak values greater than 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006)

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008)

  3. R. Berman, Thermal Conduction in Solids (Oxford: Clarendon, 1976).

    Google Scholar 

  4. A. Dehkordi, M. Zebarjadi, J. He, and T. Tritt, Mater. Sci. Eng. R. 97, 1 (2015).

  5. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  6. S. Raoux, Annu. Rev. Mater. Res. 39, 25 (2009).

  7. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  8. F. Jedema, Nat. Mater. 6, 90 (2007).

    Article  Google Scholar 

  9. J.D. Koenig, H. Boettner, J. Tomforde, and W. Bensch, in 2007 26th International Conference on Thermoelectrics (IEEE, 2007), pp. 390–393.

  10. J.B. Williams, E. Lara-Curzio, E. Cakmak, T. Watkins, and D.T. Morelli, J. Mater. Res. 30, 2605 (2015).

  11. M.N. Schneider, T. Rosenthal, C. Stiewe, and O. Oeckler, Z. Kristallogr. 225, 463 (2010).

    Article  Google Scholar 

  12. M.N. Schneider, P. Urban, A. Leineweber, M. Döblinger, and O. Oeckler, Phys. Rev. B. 81, 184102 (2010).

  13. T. Rosenthal, M.N. Schneider, C. Stiewe, M. Döblinger, and O. Oeckler, Chem. Mater. 23, 4349 (2011).

    Article  Google Scholar 

  14. S. Welzmiller, F. Fahrnbauer, F. Hennersdorf, S. Dittmann, M. Liebau, C. Fraunhofer, W.G. Zeier, G.J. Snyder, and O. Oeckler, Adv. Electron. Mater. 1, 1500266 (2015).

  15. K.S. Siegert, F.R.L. Lange, E.R. Sittner, H. Volker, C. Schlockermann, T. Siegrist, and M. Wuttig, Rep. Prog. Phys. 78, 013001 (2015).

    Article  Google Scholar 

  16. F. Yan, T.J. Zhu, X.B. Zhao, and S.R. Dong, Appl. Phys. A Mater. Sci. Process. 88, 425 (2007).

    Article  Google Scholar 

  17. D.J. Bergman and O. Levy, J. Appl. Phys. 70, 6821 (1991).

    Article  Google Scholar 

  18. D.J. Bergman and L.G. Fel, J. Appl. Phys. 85, 8205 (1999).

    Article  Google Scholar 

  19. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  20. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  21. G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nat. Commun. 7, 12167 (2016).

    Article  Google Scholar 

  22. Y. Luo, J. Yang, Q. Jiang, W. Li, D. Zhang, Z. Zhou, Y. Cheng, Y. Ren, and X. He, Adv. Energy Mater. 6, 1600007 (2016).

  23. Y. Pei, A.F. May, and G.J. Snyder, Adv. Energy Mater. 1, 291 (2011).

    Article  Google Scholar 

  24. J. Peng, L. Fu, Q. Liu, M. Liu, J. Yang, D. Hitchcock, M. Zhou, and J. He, J. Mater. Chem. A 2, 73 (2014).

    Article  Google Scholar 

  25. F. Fahrnbauer, S. Maier, M. Grundei, N. Giesbrecht, M. Nentwig, T. Rosenthal, G. Wagner, G.J. Snyder, and O. Oeckler, J. Mater. Chem. C 3, 10525 (2015).

  26. F. Fahrnbauer, D. Souchay, G. Wagner, and O. Oeckler, J. Am. Chem. Soc. 137, 12633 (2015).

  27. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  Google Scholar 

  28. M.N. Schneider, X. Biquard, C. Stiewe, T. Schröder, P. Urban, and O. Oeckler, Chem. Commun. 48, 2192 (2012).

    Article  Google Scholar 

  29. J.P. Heremans, C.M. Thrush, and D.T. Morelli, J. Appl. Phys. 98, 063703 (2005).

    Article  Google Scholar 

  30. D.M. Rowe and G. Min, Thirteen. Int. Conf. Thermoelectr. 339, 339 (1995).

    Google Scholar 

  31. K. Nishio and T. Hirano, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Br. Commun. Rev. Pap. 36, 170 (1997).

    Article  Google Scholar 

  32. S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu, and X.B. Zhao, J. Alloys Compd. 499, 215 (2010).

    Article  Google Scholar 

  33. Z. Xiong, X. Chen, X. Huang, S. Bai, and L. Chen, Acta Mater. 58, 3995 (2010).

    Article  Google Scholar 

  34. T.H. Zou, X.Y. Qin, D. Li, G.L. Sun, Y.C. Dou, Q.Q. Wang, B.J. Ren, J. Zhang, H.X. Xin, and Y.Y. Li, Appl. Phys. Lett. 104, 013904 (2014).

  35. Y. Zhang, J.H. Bahk, J. Lee, C.S. Birkel, M.L. Snedaker, D. Liu, H. Zeng, M. Moskovits, A. Shakouri, and G.D. Stucky, Adv. Mater. 26, 2755 (2014).

    Article  Google Scholar 

  36. J.H. Kim, M.J. Kim, S. Oh, and J.-S. Rhyee, J. Alloys Compd. 615, 933 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported at Michigan State University as part of the Center for Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001054. The authors would like to acknowledge Karl Dersch of the Electrical Engineering department for assistance in high-temperature laser flash. The authors would also like to acknowledge Spencer Waldrop and Winston Carr for their knowledgeable advice and insightful discussions pertaining to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared B. Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, J.B., Morelli, D.T. Using Ge Secondary Phases to Enhance the Power Factor and Figure of Merit of Ge17Sb2Te20 . J. Electron. Mater. 46, 2652–2661 (2017). https://doi.org/10.1007/s11664-016-4858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4858-x

Keywords

Navigation