Skip to main content
Log in

S@GO as a High-Performance Cathode Material for Rechargeable Aluminum-Ion Batteries

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Aluminum-ion batteries (AIBs) are considered promising post lithium-ion batteries owing to their outstanding safety, gravimetric and volumetric capacities, and cost efficiency advantages. However, one practical obstacle to their development is the lack of reliable cathode materials that can be coupled with the distinguished Al anode. To address this issue, we synthesized a S@GO composite material for use as a cathode material in AIBs. The synthesized S@GO material exhibits a rod structure with a diameter of around 100 nm. Inside these nanorods, sulfur nanoparticles with a size of around 5 nm were uniformly anchored on the graphene sheets. By taking the advantage of an introduction of graphene sheets, the capacities were significantly preserved, displaying a capacity that was more than double that of a bare S active material. In addition, a 3000-cycle long-term repeated charge/discharge measurement exhibited extremely stable capacity values with a high Coulombic efficiency of 98% at the 3000th cycle. The charge/discharge processes were clearly shown during the repeated cycling measurement at a high current density of 1000 mA g−1. This work is expected to stimulate further study of elemental S used as a cathode material for high-performance AIBs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, K., Lee, T.H., Noh, H., Islamoglu, T., Farha, O.K., Jang, H.W., Choi, J.-W., Shokouhimehr, M.: Realization of lithium-ion capacitors with enhanced energy density via the use of gadolinium hexacyanocobaltate as a cathode material. ACS Appl. Mater. Interfaces (2019). https://doi.org/10.1021/acsami.9b07711

    Article  Google Scholar 

  2. Zhang, K., Lee, T.H., Bubach, B., Ostadhassan, M., Jang, H.W., Choi, J.-W., Shokouhimehr, M.: Coordinating gallium hexacyanocobaltate: prussian blue-based nanomaterial for Li-ion storage. RSC Adv. 9(46), 26668–26675 (2019)

    Article  CAS  Google Scholar 

  3. Zhang, K., Lee, T.H., Bubach, B., Ostadhassan, M., Jang, H.W., Choi, J.-W., Shokouhimehr, M.: Layered metal–organic framework based on tetracyanonickelate as a cathode material for in situ Li-ion storage. RSC Adv. 9(37), 21363–21370 (2019)

    Article  CAS  Google Scholar 

  4. Yu, S.H., Shokouhimehr, M., Hyeon, T., Sung, Y.-E.: Iron hexacyanoferrate nanoparticles as cathode materials for lithium and sodium rechargeable batteries. ECS Electrochem. Lett. 2(4), A39–A41 (2013)

    Article  CAS  Google Scholar 

  5. Zhang, K., Varma, R.S., Jang, H.W., Choi, J.-W., Shokouhimehr, M.: Iron hexacyanocobaltate metal–organic framework: highly reversible and stationary electrode material with rich borders for lithium-ion batteries. J. Alloys Compd. 791, 911–917 (2019)

    Article  CAS  Google Scholar 

  6. Zhang, K., Lee, T.H., Jang, H.W., Shokouhimehr, M., Choi, J.-W.: A hybrid energy storage mechanism of zinc hexacyanocobaltate-based metal–organic framework endowing stationary and high-performance lithium-ion storage. Electron. Mater. Lett. 15(4), 444–453 (2019)

    Article  CAS  Google Scholar 

  7. Ko, J., Kang, S.H., Cheong, H.W., Yoon, Y.S.: Recent progress in cathode materials for thermal batteries. J. Korean Ceram. Soc. 56(3), 233–255 (2019)

    Article  CAS  Google Scholar 

  8. Park, H., Lee, S., Jo, M., Park, S., Kwon, K., Shobana, M.K., Choe, H.: Nanowire-like copper oxide grown on porous copper, a promising anode material for lithium-ion battery. J. Korean Ceram. Soc. 54(5), 438–442 (2017)

    Article  CAS  Google Scholar 

  9. Choi, M., Lee, S.H., Jung, Y.I., Choi, W.-K., Moon, J.-K., Choi, J., Seo, B.-K., Kim, S.-B.: The preparation of Fe3O4 thin film and its electrochemical characterization for Li-ion battery. Trans. Electr. Electron. Mater. 19(6), 417–422 (2018)

    Article  Google Scholar 

  10. Kalashani, M.B., Nazarpour, D.: New symmetric and hybrid multilevel inverter topology employed in solar energy systems. Trans. Electr. Electron. Mater. 19(4), 304–310 (2018)

    Article  Google Scholar 

  11. Zhang, Y., Liu, S., Ji, Y., Ma, J., Yu, H.: Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30(38), 1706310 (2018)

    Article  Google Scholar 

  12. Cai, T., Zhao, L., Hu, H., Li, T., Li, X., Guo, S., Li, Y., Xue, Q., Xing, W., Yan, Z., Wang, L.: Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy Environ. Sci. 11(9), 2341–2347 (2018)

    Article  CAS  Google Scholar 

  13. Pang, Q., Kwok, C.Y., Kundu, D., Liang, X., Nazar, L.F.: Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium–sulfur batteries. Joule 3(1), 136–148 (2019)

    Article  CAS  Google Scholar 

  14. Liu, Y.T., Han, D.D., Wang, L., Li, G.-R., Liu, S., Gao, X.-P.: Lithium–sulfur batteries: NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Adv. Energy Mater. 9(11), 1970030 (2019)

    Article  Google Scholar 

  15. Cohn, G., Ma, L., Archer, L.A.: A novel non-aqueous aluminum sulfur battery. J. Power Sources 283, 416–422 (2015)

    Article  CAS  Google Scholar 

  16. Chu, W., Zhang, X., Wang, J., Zhao, S., Liu, S., Yu, H.: A low-cost deep eutectic solvent electrolyte for rechargeable aluminum–sulfur battery. Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2019.01.025

    Article  Google Scholar 

  17. Guo, Y., Jin, H., Qi, Z., Hu, Z., Ji, H., Wan, L.-J.: Carbonized-MOF as a sulfur host for aluminum–sulfur batteries with enhanced capacity and cycling life. Adv. Funct. Mater. 29(7), 1807676 (2019)

    Article  Google Scholar 

  18. Yu, X., Manthiram, A.: Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum–sulfur chemistry. Adv. Energy Mater. 7(18), 1700561 (2017)

    Article  Google Scholar 

  19. Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  CAS  Google Scholar 

  20. Wu, J.B., Lin, M.L., Cong, X., Liu, H.-N., Tan, P.-H.: Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47(5), 1822–1873 (2018)

    Article  CAS  Google Scholar 

  21. McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)

    Article  CAS  Google Scholar 

  22. Hu, Y., Ye, D., Luo, B., Hu, H., Zhu, X., Wang, S., Li, L., Peng, S., Wang, L.: A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv. Mater. 30(2), 1703824 (2018)

    Article  Google Scholar 

  23. Wu, Y., Gong, M., Lin, M.C., Yuan, C., Angell, M., Huang, L., Wang, D.-Y., Zhang, X., Yang, J., Hwang, B.-J., Dai, H.: 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 28(41), 9218–9222 (2016)

    Article  CAS  Google Scholar 

  24. Wang, S., Yu, Z., Tu, J., Wang, J., Tian, D., Liu, Y., Jiao, S.: A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv. Energy Mater. 6(13), 1600137 (2016)

    Article  Google Scholar 

  25. Chen, H., Guo, F., Liu, Y., Huang, T., Zheng, B., Ananth, N., Xu, Z., Gao, W., Gao, C.: A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29(12), 1605958 (2017)

    Article  Google Scholar 

  26. Wang, S., Jiao, S., Wang, J., Chen, H.-S., Tian, D., Lei, H., Fang, D.-N.: High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1), 469–477 (2016)

    Article  CAS  Google Scholar 

  27. Gao, T., Li, X., Wang, X., Hu, J., Han, F., Fan, X., Suo, L., Pearse, A.J., Lee, S.B., Rubloff, G.W., Gaskell, K.J., Noked, M., Wang, C.: A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew. Chem. Int. Ed. 55(34), 9898–9901 (2016)

    Article  CAS  Google Scholar 

  28. Yang, H., Yin, L., Liang, J., Sun, Z., Wang, Y., Li, H., He, K., Ma, L., Peng, Z., Qiu, S., Sun, C., Cheng, H.-M., Li, F.: An aluminum–sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 57(7), 1898–1902 (2018)

    Article  CAS  Google Scholar 

  29. Razzaq, A.A., Yao, Y., Shah, R., Qi, P., Miao, L., Chen, M., Zhao, X., Peng, Y., Deng, Z.: High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater. 16, 194–202 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Institute of Science and Technology Future Resource Program (2E29400). Furthermore, the financial supports of the Future Material Discovery Program (2016M3D1A1027666), the Basic Science Research Program (2017R1A2B3009135) through the National Research Foundation of Korea, and China Scholarship Council are appreciated (201808260042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ho Won Jang, Mohammadreza Shokouhimehr or Ji-Won Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Lee, T.H., Cha, J.H. et al. S@GO as a High-Performance Cathode Material for Rechargeable Aluminum-Ion Batteries. Electron. Mater. Lett. 15, 720–726 (2019). https://doi.org/10.1007/s13391-019-00170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00170-7

Keywords

Navigation