Skip to main content
Log in

New Symmetric and Hybrid Multilevel Inverter Topology Employed in Solar Energy Systems

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, novel symmetric and hybrid topologies have been proposed for single phase multilevel inverter structures based on a new basic unit. The proposed topologies can be employed in solar energy systems. The main focus of this paper is to reduce the overall cost as well as to increase the efficiency of the multilevel inverters. To generate greater number of voltage levels, the basic units have been cascaded with each other to make extended topology. Different comparisons such as the number of power switches and percentage of THD against the number of voltage levels have been drawn to illustrate the advantages of the proposed topologies. To validate the performance of the proposed topologies, a 20 kW PV arrays based on fifteen-level hybrid inverter has been simulated through MATLAB/Simulink software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

kW:

Kilowatt

kVAr:

Kilovar

PV:

Photovoltaic

CHB-MLI:

Cascade H-bridge inverter

IGBT:

Insulated gate bipolar transistor

NPC:

Neutral point clamped

FC:

Flying capacitor

CHB:

Cascaded H-bridge

qZSDCc:

Quasi Z-source DC–DC converter

THD:

Total harmonic distortion

Rms:

Root mean square

FFT:

Fast Fourier transform

References

  1. “Electric power converter” ed: Google Patents (1975)

  2. J. Rodriguez, J.-S. Lai, F.Z. Peng, Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  3. K. Corzine, Y. Familiant, A new cascaded multilevel H-bridge drive. IEEE Trans. Power Electron. 17(1), 125–131 (2002)

    Article  Google Scholar 

  4. Y. Zhang, Z. Zhao, J. Zhu, A hybrid PWM applied to high-power three-level inverter-fed induction-motor drives. IEEE Trans. Ind. Electron. 58(8), 3409–3420 (2011)

    Article  Google Scholar 

  5. G. Mondal, K. Sivakumar, R. Ramchand, K. Gopakumar, E. Levi, A dual seven-level inverter supply for an open-end winding induction motor drive. IEEE Trans. Ind. Electron. 56(5), 1665–1673 (2009)

    Article  Google Scholar 

  6. J.-H. Kim, S.-K. Sul, P.N. Enjeti, A carrier-based PWM method with optimal switching sequence for a multilevel four-leg voltage-source inverter. IEEE Trans. Ind. Appl. 44(4), 1239–1248 (2008)

    Article  Google Scholar 

  7. M.R. Banaei, E. Salary, Single-source cascaded transformers multilevel inverter with reduced number of switches. IET Power Electron. 5(9), 1748–1753 (2012)

    Article  Google Scholar 

  8. Z. Pan, F.Z. Peng, Harmonics optimization of the voltage balancing control for multilevel converter/inverter systems. In Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE, 2004, vol. 4, pp. 2194–2201: IEEE

  9. I. Abdalla, J. Corda, L. Zhang, Multilevel DC-link inverter and control algorithm to overcome the PV partial shading. IEEE Trans. Power Electron. 28(1), 14–18 (2013)

    Article  Google Scholar 

  10. G. Buticchi, D. Barater, E. Lorenzani, C. Concari, G. Franceschini, A nine-level grid-connected converter topology for single-phase transformerless PV systems. IEEE Trans. Ind. Electron. 61(8), 3951–3960 (2014)

    Article  Google Scholar 

  11. Y. Liu, F. Luo, Trinary hybrid multilevel inverter used in STATCOM with unbalanced voltages. In Electric Power Applications, IEE Proceedings-, 2005, vol. 152, no. 5, pp. 1203–1222: IET

  12. M. Saradarzadeh, S. Farhangi, J.-L. Schanen, P.-O. Jeannin, D. Frey, Application of cascaded H-bridge distribution-static synchronous series compensator in electrical distribution system power flow control. IET Power Electron. 5(9), 1660–1675 (2012)

    Article  Google Scholar 

  13. C. Hochgraf, R.H. Lasseter, A transformer-less static synchronous compensator employing a multi-level inverter. IEEE Trans. Power Deliv. 12(2), 881–887 (1997)

    Article  Google Scholar 

  14. G. Waltrich, I. Barbi, Three-phase cascaded multilevel inverter using power cells with two inverter legs in series. IEEE Trans. Ind. Electron. 8(57), 2605–2612 (2010)

    Article  Google Scholar 

  15. M.F.M. Elias, N.A. Rahim, H.W. Ping, M.N. Uddin, Asymmetrical cascaded multilevel inverter based on transistor-clamped h-bridge power cell. IEEE Trans. Ind. Appl. 50(6), 4281–4288 (2014)

    Article  Google Scholar 

  16. X. Zha, L. Xiong, J. Gong, F. Liu, Cascaded multilevel converter for medium-voltage motor drive capable of regenerating with part of cells. IET Power Electron. 7(5), 1313–1320 (2014)

    Article  Google Scholar 

  17. A. Nabae, I. Takahashi, H. Akagi, A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 5, 518–523 (1981)

    Article  Google Scholar 

  18. X. Yuan, I. Barbi, Fundamentals of a new diode clamping multilevel inverter. IEEE Trans. Power Electron. 15(4), 711–718 (2000)

    Article  Google Scholar 

  19. S. Choi, M. Saeedifard, Capacitor voltage balancing of flying capacitor multilevel converters by space vector PWM. IEEE Trans. Power Deliv. 27(3), 1154–1161 (2012)

    Article  Google Scholar 

  20. D. Sun, B. Ge, D. Bi, F.Z. Peng, Analysis and control of quasi-Z source inverter with battery for grid-connected PV system. Int. J. Electr. Power Energy Syst. 46, 234–240 (2013)

    Article  Google Scholar 

  21. M.B. Kalashani, M. Farsadi, New Structure for Photovoltaic Systems with Maximum Power Point Tracking Ability. Int. J. Power Electron. Drive Syst. 4(4), 489 (2014)

    Google Scholar 

  22. M.G. Villalva, J.R. Gazoli, E. Ruppert Filho, Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryush Nazarpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar Kalashani, M., Nazarpour, D. New Symmetric and Hybrid Multilevel Inverter Topology Employed in Solar Energy Systems. Trans. Electr. Electron. Mater. 19, 304–310 (2018). https://doi.org/10.1007/s42341-018-0031-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0031-y

Keywords

Navigation