Skip to main content
Log in

High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, electric energy storage properties of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 (PLZT 11/70/30) relaxor ceramics were investigated. XRD pattern and SEM image confirms the perovskite phase and dense structure without any secondary phases and pores, respectively. Room temperature dielectric constant was found to be high (~ 3520) with low dielectric loss (~ 0.03). Dielectric constant changes with temperature confirm the relaxor ferroelectric behaviour of PLZT ceramics. Different parameters such as degree of deviation (ΔTm) from the Curie–Weiss law, the diffuseness of the phase transition (ΔTdiff) and degree of diffuseness (γ), which are related to the relaxor nature of ferroelectrics were calculated. With the remarkably slim polarization versus electric field hysteresis loops even at high applied electric field, high energy storage of 0.85 J/cm3 and very high energy storage efficiency of 92.9% were obtained from the PLZT ceramics. These values suggest that the PLZT 11/70/30 composition can be used for the pulse driving energy storage applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ortega, N., Kumar, A., Scott, J.F., Chrisey, D.B., Tomazawa, M., Kumari, S., Diestra, D.G.B., Katiyar, R.S.: Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys.: Condens. Matter 24, 445901 (2012)

    Google Scholar 

  2. Tong, S., Ma, B., Narayanan, M., Liu, S., Koritala, R., Balachandran, U., Shi, D.: Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl. Mater. Interfaces. 5, 1474–1480 (2013)

    Article  Google Scholar 

  3. Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Hwang, C.S.: Thin HfxZr1−xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014)

    Article  Google Scholar 

  4. Yang, D., Kang, S.-B., Lim, J.-H., Yoon, S., Ryu, J., Choi, J.-J., Velayutham, T.S., Kim, H., Jeong, D.-Y.: Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains. Met. Mater. Int. 23(5), 1045–1049 (2017)

    Article  Google Scholar 

  5. Peddigari, M., Palneedi, H., Hwang, G.-T., Ryu, J.: Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J. Korean Ceram. Soc. 56(1), 1–23 (2019)

    Article  Google Scholar 

  6. Gao, J., Liu, Y., Wang, Y., Wang, D., Zhong, L., Ren, X.: High temperature-stability of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 ceramic for energy-storage applications at finite electric field strength. Scripta Mater. 137, 114–118 (2017)

    Article  Google Scholar 

  7. Liu, Z., Dong, X., Liu, Y., Cao, F., Wang, G.: Electric field tunable thermal stability of energy storage properties of PLZST antiferroelectric ceramics. J. Am. Ceram. Soc. 100, 2382–2386 (2017)

    Article  Google Scholar 

  8. Tang, Z., Ge, J., Ni, H., Lu, B., Tang, X.-G., Lu, S.-G., Tang, M., Gao, J.: High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3–BaTiO3 thin film capacitor with good temperature stability. J. Eur. Ceram. Soc. 38, 2511–2519 (2018)

    Article  Google Scholar 

  9. Peddigari, M., Palneedi, H., Hwang, G.-T., Lim, K.W., Kim, G.-Y., Jeong, D.-Y., Ryu, J.: Boosting the recoverable energy density of lead-free ferroelectric ceramic thick films through artificially induced quasi-relaxor behavior. ACS Appl. Mater. Interfaces. 10, 20720–20727 (2018)

    Article  Google Scholar 

  10. Fan, Q., Liua, M., Mab, C., Wanga, L., Rena, S., Lua, L., Lou, X., Jia, C.-L.: Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 51, 539–545 (2018)

    Article  Google Scholar 

  11. Park, C.-K., Lee, S.H., Lim, J.-H., Ryu, J., Choi, D.H., Jeong, D.-Y.: Nano-size grains and high density of 65PMN-35PT thick film for high energy storage capacitor. Ceram. Int. 44, 20111–20114 (2018)

    Article  Google Scholar 

  12. Wang, C., Zhang, J., Gong, S., Ren, K.: Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 124, 154103 (2018)

    Article  Google Scholar 

  13. Jinxi, Z., Du, X., Wang, C., Ren, K.: Poly(vinylidene fluoride-hexafluoropropylene) based blend film for ultrahigh energy density capacitor applications. J. Phys. D Appl. Phys. 51(25), 255306 (2018)

    Article  Google Scholar 

  14. Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y., Ryu, J.: High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018)

    Article  Google Scholar 

  15. Yao, Z., Song, Z., Hao, H., Yu, Z., Cao, M., Zhang, S., Lanagan, M.T., Liu, H.: Homogeneous/inhomogeneous structured dielectrics and their energy-storage performances. Adv. Mater. 29(20), 1601727 (2017)

    Article  Google Scholar 

  16. Randall, C.A., Ogihara, H., Kim, J.R., Yang, G.Y., Stringer, C.S., McKinstry, S.T., Lanagan, M.: 17th IEEE International Pulsed Power Conference Washington D.C., USA 2009, p. 346

  17. Li, Q., Yao, F.-Z., Liu, Y., Zhang, G., Wang, H., Wang, Q.: High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018)

    Article  Google Scholar 

  18. Liu, Z., Chen, X., Peng, W., Xu, C., Dong, X., Cao, F., Wang, G.: Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)

    Article  Google Scholar 

  19. Holger, G.W., Podeyn, F., Weise, H.G.G.: High energy density capacitors for ETC gun applications. IEEE Trans. Magn. 37, 332 (2001)

    Article  Google Scholar 

  20. Fan, H., Peng, B., Zhang, Q.: Preparation and field-induced electrical properties of perovskite relaxor ferroelectrics. Trans. Electr. Electron. Mater. 16(1), 1–4 (2015)

    Article  Google Scholar 

  21. Hao, X.: A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3(1), 1330001 (2013)

    Article  Google Scholar 

  22. Lin, Z., Chen, Y., Liu, Z., Wang, G., Rémiens, D., Dong, X.: Large energy storage density, low energy loss and highly stable (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 antiferroelectric thin-film capacitors. J. Eur. Ceram. Soc. 38, 3177–3181 (2018)

    Article  Google Scholar 

  23. Baek, S.H., Rzchowski, M.S., Aksyuk, V.A.: Giant piezoelectricity in PMN–PT thin films: beyond PZT. MRS Bull. 37, 1022 (2012)

    Article  Google Scholar 

  24. Plonska, M., Surowiak, Z.: Piezoelectric properties of x/65/35 PLZT ceramics depended of the lanthanum (x) ions contents. Mol. Quantum Acoust. 27, 207 (2006)

    Google Scholar 

  25. Parashar, S.K.S., Parashar, K.: Nano-scale effects on structural and giant dielectric of PZT synthesized by high energy ball mill. Integr. Ferroelectr. 121, 106–112 (2010)

    Article  Google Scholar 

  26. Lu, B., Li, P., Tang, Z., Yao, Y., Gao, X., Kleemann, W., Lu, S.-G.: Large electrocaloric effect in relaxor ferroelectric and antiferroelectric lanthanum doped lead zirconate titanate ceramics. Sci. Rep. 7, 45335 (2017)

    Article  Google Scholar 

  27. Haertling, G.H.: Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  28. Fu, S.L., Cheng, S.Y., Wei, C.C.: Effects of doping pairs on the preparation and dielectricity of PLZT ceramics. Ferroelectrics 67, 93–102 (1986)

    Article  Google Scholar 

  29. Uchino, K., Nomura, S.: Critical exponents of the dielectric constants in diffused phase transition crystals. Ferroelectr. Lett. 44(3), 55–61 (1982)

    Article  Google Scholar 

  30. Kumar, A., Raju, K.C.J., James, A.R.: Diffuse phase transition in mechanically activated (Pb1−xLax)(Zr0.60Ti0.40)O3 electro-ceramics. J. Mater. Sci.: Mater. Electron. 28, 13928–13936 (2017)

    Google Scholar 

  31. Viehland, D., Wutting, M., Cross, L.E.: The glassy behavior of relaxor ferroelectrics. Ferroelectrics 120, 71–77 (1991)

    Article  Google Scholar 

  32. Kumar, A., Raju, K.C.J., James, A.R.: Micro-structural, dielectric, ferroelectric and piezoelectric properties of mechanically processed (Pb1−xLax)(Zr0.60Ti0.40)O3 ceramics. J. Mater. Sci.: Mater. Electron. 29, 13483–13494 (2018)

    Google Scholar 

  33. Oh, H.-T., Lee, J.-Y., Lee, H.-Y.: Mn-modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3] single crystals for high power piezoelectric transducers. J. Korean Ceram. Soc. 54(2), 150–157 (2017)

    Article  Google Scholar 

  34. Zhang, S., Li, F., Yu, F., Jiang, X., Lee, H.-Y., Luo, J., Shrout, T.R.: Recent developments in piezoelectric crystals. J. Korean Ceram. Soc. 55(5), 419–439 (2018)

    Article  Google Scholar 

  35. Kim, H.-P., Ahn, C.W., Hwang, Y., Lee, H.-Y., Jo, W.: Strategies of a potential importance, making lead-free piezoceramics truly alternative to PZTs. J. Korean Ceram. Soc. 54, 86–95 (2017)

    Article  Google Scholar 

  36. Kang, J.-K., Dinh, T.H., Lee, C.-H., Han, H.-S., Lee, J.-S., Tran, V.D.N.: Comparative study of conventional and microwave sintering of large strain Bi-based perovskite ceramics. Trans. Electr. Electron. Mater. 18(1), 1–6 (2017)

    Article  Google Scholar 

  37. Kumar, A., Prasad, V.V.B., James Raju, K.C.J., James, A.R.: Lanthanum induced diffuse phase transition in high energy mechanochemically processed and poled PLZT 8/60/40 ceramics. J. Alloys Comp. 654, 95–102 (2016)

    Article  Google Scholar 

  38. Burns, G., Dacol, F.H.: Ferroelectrics with a glassy polarization phase. Ferroelectrics 104, 25–35 (1990)

    Article  Google Scholar 

  39. Kleemann, W.: Cluster glass ground state via random fields and random bonds. Phys. Status Solidi B 251, 1993–2002 (2014)

    Article  Google Scholar 

  40. Pirc, R., Kutnjak, Z., Blinc, R., Zhang, Q.M.: Upper bounds on the electrocaloric effect in polar solids. Appl. Phys. Lett. 98, 021909 (2011)

    Article  Google Scholar 

  41. Wang, X., Shen, J., Yang, T., Xiao, Z., Dong, Y.: Phase transition and energy storage performance in Ba-doped PLZST antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 26, 9200–9204 (2015)

    Google Scholar 

  42. Wang, J., Yang, T., Chen, S., Yao, X.: Small hysteresis and high energy storage power of antiferroelectric ceramics. Funct. Mater. Lett. 7(1), 1350064 (2014)

    Article  Google Scholar 

  43. Zhang, L., Jiang, S., Fan, B., Zhang, G.: Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3 (Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering. J. Alloys Compd. 622, 162–165 (2015)

    Article  Google Scholar 

  44. Xu, R., Xu, Z., Feng, Y., Tian, J., Huang, D.: Energy storage and release properties of Sr doped (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 42, 12875–12879 (2016)

    Article  Google Scholar 

  45. Zhang, Q., Tong, H., Chen, J., Lu, Y., Yang, T., Yao, X., He, Y.: High recoverable energy density over a wide temperature range in Sr modified (Pb, La) (Zr, Sn, Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Appl. Phys. Lett. 109, 262901 (2016)

    Article  Google Scholar 

  46. Zhang, T.-F., Tang, X.-G., Huang, X.X., Liu, Q.-X., Jiang, Y.-P., Zhou, Q.F.: High-temperature dielectric relaxation behaviors of relaxer like PbZrO3–SrTiO3 ceramics for energy-storage applications. Energy Technol. 4(5), 633–640 (2016)

    Article  Google Scholar 

  47. Zhang, T.-F., Tang, X.-G., Liu, Q.X., Jiang, Y.-P., Huang, X.X., Zhou, Q.F.: Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics. J. Phys. D Appl. Phys. 49(9), 095302 (2016)

    Article  Google Scholar 

  48. Li, B., Liu, Q.-X., Tang, X.-G., Zhang, T.-F., Jiang, Y.-P., Li, W.-H., Luo, J.: Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics with a large energy-density for dielectric energy storage. RSC Adv. 7(68), 43327–43333 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A2B4011663).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geon-Tae Hwang or Jungho Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kim, S.H., Peddigari, M. et al. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics. Electron. Mater. Lett. 15, 323–330 (2019). https://doi.org/10.1007/s13391-019-00124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00124-z

Keywords

Navigation