Skip to main content
Log in

Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Hierarchical CoMn2O4 microspheres assembled by nanoparticles have been successfully synthesized by a facile hydrothermal method and a subsequent annealing treatment. XRD detection indicate the crystal structure. SEM and TEM results reveal the 3-dimensional porous and micro-/nanostructural microsphere assembled by nanoparticles with a size of 20-100 nm. The CoMn2O4 electrode show initial specific discharge capacity of approximately 1546 mAh/g at the current rates 100 mA/g with a coulombic efficiency of 66.7% and remarkable specific capacities (1029-485 mAh/g) at various current rates (100-2800 mA/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. X. Zhang, Y. L. Wang, H. F. Jiu, W. H. Zheng, J. X. Chang, and G. F. He, Electrochim. Acta 182, 550 (2015).

    Article  Google Scholar 

  2. N. H. Zhao, G. J. Wang, Y. Huang, B. Wang, B. D. Yao, and Y. P. Wu, Chem. Mater. 20, 2612 (2008).

    Article  Google Scholar 

  3. Y. S. Zhu, F. X. Wang, L. L. Liu, S. Y. Xiao, Z. Chang, and Y. P. Wu, Energy Environ. Sci. 6, 618 (2013).

    Article  Google Scholar 

  4. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, J. Mater. Chem. 21, 9938 (2011).

    Article  Google Scholar 

  5. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).

    Article  Google Scholar 

  6. S. K. Ujjain, P. Ahuja, and R. K. Sharma, J. Mater. Chem. A. 3, 9925 (2015).

    Article  Google Scholar 

  7. X. W. Li, S. L. Xiong, J. F. Li, X. Liang, J. Z. Wang, J. Bai, and Y. T. Qian, Chem. Eur. J. 19, 11310 (2013).

    Article  Google Scholar 

  8. Y. R. Liu, B. C. Zhang, J. K. Feng, and S. L. Xiong, RSC Adv. 5, 26863 (2015).

    Article  Google Scholar 

  9. L. Zhou, D. Y. Zhao, and X. W. Lou, Adv. Mater. 24, 745 (2012).

    Article  Google Scholar 

  10. G. D. Li, L. Q. Xu, Y. J. Zhai, and Y. P. Hou, J. Mater. Chem. A. 3, 14298 (2015).

    Article  Google Scholar 

  11. M. H. Kim, Y. J. Hong, and Y. C. Kang, RSC Adv. 3, 13110 (2013).

    Article  Google Scholar 

  12. J. F. Ye, W. Liu, J. G. Cai, S. Chen, X. W. Zhao, and H. H. Zhou, J. Am. Chem. Soc. 133, 933 (2011).

    Article  Google Scholar 

  13. X. J. Hou, X. F. Wang, B. Liu, Q. F. Wang, T. Luo, D. Chen, and G. Z. Shen, Nanoscale 6, 8858 (2014).

    Article  Google Scholar 

  14. S. M. Oh, S. T. Myung, Y. S. Choi, K. H. Ohd, and Y. K. Sun, J. Mater. Chem. 21, 19368 (2011).

    Article  Google Scholar 

  15. F. X. Wang, Z. Chang, X. W. Wang, Y. F. Wang, B. W. Chen, Y. S. Zhu, and Y. P. Wu, J. Mater. Chem. A 3, 4840 (2015).

    Article  Google Scholar 

  16. Y. R. Liu, B. C. Zhang, J. K. Feng, and S. L. Xiong, RSC Adv. 5, 26863 (2015).

    Article  Google Scholar 

  17. W. H. Guo, X. X. Ma, X. L. Zhang, Y. Q. Zhang, D. L. Yu, and X. Q. He, RSC Adv. 6, 96436 (2016).

    Article  Google Scholar 

  18. L. Hu, H. Zhong, X. R. Zheng, Y. M. Huang, P. Zhang, and Q. W. Chen, Sci. Rep. 2, 986 (2012).

    Article  Google Scholar 

  19. P. Stefan, H. Holger, S. Marco, M. Stefan, M. Valeriu, K. P. Annie, I. Sylvio, S. Ulrich, K. Lorenz, D. Viola, H. Svenja, and B. Wolfgang, RSC Adv. 3, 23001 (2013).

    Article  Google Scholar 

  20. L. Wang, X. Zhao, Y. H. Lu, M. W. Xu, D.W. Zhang, and R. S. Ruoff, J. Electrochem. Soc. 158, A1379 (2011).

    Article  Google Scholar 

  21. H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Gosele, Nat. Mater. 5, 627 (2006).

    Article  Google Scholar 

  22. H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, Nanotechnology 17, 5157 (2006).

    Article  Google Scholar 

  23. J. Li, S. Xiong, X. Li, and Y. Qian, Nanoscale 5, 2045 (2013).

    Article  Google Scholar 

  24. L. Hu, H. Zhong, X. Zheng, Y. Huang, P. Zhang, and Q. Chen, Sci. Rep. 2, 986 (2012).

    Article  Google Scholar 

  25. M. H. Kim, Y. J. Hong, and Y. C. Kang, RSC Adv. 3, 13110 (2013).

    Article  Google Scholar 

  26. G. Li, L. Xu, Y. Zhai, and Y. Hou, J. Mater. Chem. A 3, 14298 (2015).

    Article  Google Scholar 

  27. J. Li, J. Wang, X. Liang, Z. Zhang, H. Liu, and Y. Qian, ACS Appl. Mater. Inter. 6, 24 (2014).

    Article  Google Scholar 

  28. J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, and K. Zhang, Nano Energy 12, 437 (2015).

    Article  Google Scholar 

  29. C. Fu, G. Li, D. Luo, X. Huang, J. Zheng, and L. Li, ACS Appl. Mater. Inter. 6, 2439 (2014).

    Article  Google Scholar 

  30. S. W. Kim, H. W. Lee, P. Muralidharan, D. H. Seo, W. S. Yoon, D. K. Kim, and K. Kang, Nano Res. 4, 505 (2011).

    Article  Google Scholar 

  31. H. Lai, J. Li, Z. Chen, and Z. Huang, ACS Appl. Mater. Inter. 4, 2325 (2012).

    Article  Google Scholar 

  32. M. V. Reddy, G. V. S. Rao, and B. V. R. Chowdari, Chem. Rev. 113, 5364 (2013).

    Article  Google Scholar 

  33. Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang, and Y. Qian, Nanoscale 5, 2442 (2013).

    Article  Google Scholar 

  34. X. Xu, J. Liang, H. Zhou, D. Lv, F. Liang, Z. Yang, S. Ding, and D. Yu, J. Mater. Chem. 1, 2995 (2013).

    Article  Google Scholar 

  35. X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, and D. He, J. Mater. Chem. 21, 3571 (2011).

    Article  Google Scholar 

  36. G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, and H. M. Cheng, Chem. Mater. 22, 5306 (2010).

    Article  Google Scholar 

  37. S. Grugeon, S. Laruelle, L. Dupont, and J. M. Tarascon, Solid State Sci. 5, 895 (2003).

    Article  Google Scholar 

  38. W. Luo, X. Hu, Y. Sun, and Y. Huang, J. Mater. Chem. 22, 8916 (2012).

    Article  Google Scholar 

  39. L. Mao, K. Zhang, H. S. O. Chan, and J. Wu, J. Mater. Chem. 22, 1845 (2012).

    Article  Google Scholar 

  40. Y. Zhang, Y. Wang, Y. Xie, T. Cheng, W. Lai, H. Pang, and W. Huang, Nanoscale 6, 14354 (2014).

    Article  Google Scholar 

  41. N. Du, Y. F. Xu, H. Zhang, J. X. Yu, C. X. Zhai, and D. R. Yang, Inorg. Chem. 50, 3320 (2011).

    Article  Google Scholar 

  42. Z. Tan, Z. H. Sun, H. H. Wang, Q. Guo, and D. S. Su, J. Mater. Chem. A 1, 9462 (2013).

    Article  Google Scholar 

  43. Q. Qu, Y. Zhu, X. Gao, and Y. Wu, Adv. Energy Mater. 2, 950 (2012).

    Article  Google Scholar 

  44. W. Tang, L. Liu, Y. Zhu, H. Sun, Y. Wu, and K. Zhu, Energ. Environ. Sci. 5, 6909 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok-ho Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hou, X., Li, Y. et al. Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries. Electron. Mater. Lett. 13, 427–433 (2017). https://doi.org/10.1007/s13391-017-6258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6258-7

Keywords

Navigation