Skip to main content
Log in

Photo physical studies of PVP arrested ZnS quantum dots

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Monodispersed polyvinylpyrrolidone (PVP) arrested ZnS quantum dots (QDs) having diameter in range ~2-5 nm are synthesized by a colloidal precipitation method using PVP as the stabilizing agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selective area electron diffraction (SAED) and Fourier transform infrared (FT-IR) spectroscopy are probed to investigate the structural information. The optical properties are studied using diffuse UV-visible reflectance and photoluminescence (PL) spectroscopy techniques. TEM images as well as XRD reflection peak broadening indicate the nanometer size particles formation with cubic (sphalerite) phase within the polymer matrix. Optical absorbance studies reveal an excitonic peak at around ~310 nm dictates the effect of quantum confinement effect in the ZnS QDs. PL emission spectra for ZnS QDs in PVP exhibit four emission peaks at ~382 nm, ~414 nm, ~480 nm and ~527 nm are observed. These excitonic emissions from ZnS QDs are caused by the interstitial sulfur/Zn vacancies and surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, C. An, S. Wang, Z. Wang, and D. Xia, J. Cryst. Growth 311, 3775 (2009).

    Article  Google Scholar 

  2. R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, J. Chem. Phys. 82, 552 (1985).

    Article  Google Scholar 

  3. M. N. Rittner and T. Abraham, “Nanostructured Materials: An Overview and Commercial Analysis”, JOM 50, 37 (1998).

    Article  Google Scholar 

  4. M. Mozafaria, F. Moztarzadeh, A. M. Seifalian, and L. Tayebi, J. Lumin. 133, 188 (2013).

    Article  Google Scholar 

  5. A. K. Shahi, B. K. Pandey, R. K. Swarnkar, and R. Gopal, App. Surf. Sci. 257, 9846 (2011).

    Article  Google Scholar 

  6. D.-W. Wang, S.-L. Zhao, Z. Xu, C. Kong, and W. Gong, Org. Electro. 12, 92 (2011).

    Article  Google Scholar 

  7. G. Boutaud, W. M. Cranton, D. C. Koutsogeorgis, R. M. Ranson, C. Tsakonas, and C. B. Thomas, Mater. Sci. Eng. B 165, 202 (2009).

    Article  Google Scholar 

  8. A. Fujii, H. Wada, K.-I. Shibata, S. Nakayama, and M. Hasegawa, Proc. SPIE 206, 4375 (2001).

    Google Scholar 

  9. C. C. Kao and Y. C. Liu, Mater. Chem. Phys. 115, 463 (2009).

    Article  Google Scholar 

  10. A. K. Shahi, B. K. Pandey, R. K. Swarnkar, and R. Gopal, J. Alloy. Compd. 588, 440 (2014).

    Article  Google Scholar 

  11. C. Wang, L. Guan, Y. Mao, Y. Gu, J. Liu, S. Fu, and Q. Xu, J. Phy. D: Appl. Phys. 42, 045403 (2009).

    Article  Google Scholar 

  12. S. Gawada, A. Podborska, W. Macyk, and K. Szacilowski, Nanoscale 1, 299 (2009).

    Article  Google Scholar 

  13. A. Bobrovsky, V. Shibaev, G. Elyashevitch, K. Mochalov, and V. Olynikov, Colloid Ploym. Sci. 293, 1545 (2015).

    Article  Google Scholar 

  14. C. Lü, Y. Cheng, Y. Liu, F. Liu, and B. Yang, Adv. Mater. 18, 1188 (2006).

    Article  Google Scholar 

  15. Y. Ma, L. Qi, J. Ma, and H. Cheng, Langmuir 19, 4040 (2003).

    Article  Google Scholar 

  16. W. Vogel, P. H. Borse, N. Deshmukh, and S. K. Kulkarni, Langmuir 16, 2032 (2000).

    Article  Google Scholar 

  17. Y. Chen, X. Ji, S. Jiang, Q. Sun, and B. Jiang, Colloid Polym. Sci. 281, 386 (2003).

    Article  Google Scholar 

  18. R. Zeng, M. Z. Rong, M. Q. Zhang, H. C. Liang, and H. M. Zeng, J. Mat. Sci. Lett. 20, 1473 (2001).

    Article  Google Scholar 

  19. K. E. Gonsalves, H. Li, and P. Santiago, J. Mat. Sci. 36, 2461 (2001).

    Article  Google Scholar 

  20. H. Yin, Y. Wada, T. Kitamura, and S. Yanagida, Environ. Sci. Technol. 35, 227 (2001).

    Article  Google Scholar 

  21. T. Thi, Q. Hoa, L. V. Vu, T. D. Canh, and N. N. Long, J. Phys. Conf. Ser. 187, 012081 (2009).

    Article  Google Scholar 

  22. R. Gärd, Z. X. Sun, and W. Forsling, J. Colloid Interf. Sci. 169, 399 (1995).

    Article  Google Scholar 

  23. C. S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, and P. C. Angelo, Physica B 393, 11 (2007).

    Article  Google Scholar 

  24. J. Coates, Interpretation Encyclopedia of Analytical Chemistry (R. A. Meyers Ed.), John Wiley & Sons (2000).

  25. H. D. Lutz, W. Pobitschka, B. Frischemeimer, and R. A. Becker, Appl. Spectrosc. 32, 541 (1978).

    Article  Google Scholar 

  26. M. Navaneethan, J. Archana, K. D. Nisha, S. Ponnusamy, M. Arivanandhan, Y. Hayakawa, and C. Muthamizhchelvan, Mater. Lett. 66, 276 (2012).

    Article  Google Scholar 

  27. Z. Jindal and N. K. Verma, Mater. Chem. Phys. 24, 270 (2010).

    Article  Google Scholar 

  28. N. Goswami and P. Sen, Solid State Commun. 132, 791 (2004).

    Article  Google Scholar 

  29. Y. Liu, Z. Li, W. Zhong, L. Zhang, W. Chen, and Q. Li, Nanoscale. Res. Lett. 9, 389 (2014).

    Article  Google Scholar 

  30. W. G. Becker and A. J. Bard, J. Phys. Chem. 87, 4888 (1983).

    Article  Google Scholar 

  31. D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. 84, 2841 (1998).

    Article  Google Scholar 

  32. P. A. Hu, Y. Q. Liu, L. Fu, L. C. Cao, and D. B. Zhu, J. Phys. Chem. B 108, 936 (2004).

    Article  Google Scholar 

  33. S. Kar and S. Chaudhuri, J. Phys. Chem. B 109, 3298 (2005).

    Article  Google Scholar 

  34. D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, and Y. Zhu, J. Mater. Chem. A 2, 15377 (2014).

    Article  Google Scholar 

  35. L. Q. Jing, X. J. Sun, B. F. Xin, W. M. Cai, and H. G. Fu, J. Solid State Chem. 177, 3375 (2004).

    Article  Google Scholar 

  36. D. Z. Li, Y. Zheng, and X. Z. Fu, Chin. J. Mater. Res. 14, 639 (2000).

    Google Scholar 

  37. L. D. Zhang and J. M. Mou, Beijing: Science Press, China (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar Shahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahi, A.K., Pandey, B.K., Singh, B.P. et al. Photo physical studies of PVP arrested ZnS quantum dots. Electron. Mater. Lett. 13, 160–167 (2017). https://doi.org/10.1007/s13391-017-6132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6132-7

Keywords

Navigation