Skip to main content
Log in

Three-dimensional FeSe2 microflowers assembled by nanosheets: Synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Three-dimensional FeSe2 microflowers were synthesized for the first time by a facile solvothermal method, using FeCl2·4H2O and selenium powder as raw materials, along with ethanolamine as solvent. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results show that the FeSe2 microflowers consist of nanosheets with a thickness of about 50 – 80 nm. The Raman spectrum shows the characteristic peaks of Se-Se vibration modes. The optical band gap of the sample was determined to be 1.48 eV by UV-visible absorption spectroscopy. The photoluminescence properties of the FeSe2 microflowers and their catalytic activity for the hydrogen evolution reaction were also assessed. Finally, a possible growth mechanism of the FeSe2 microflowers is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003).

    Article  Google Scholar 

  2. K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, Adv. Mater. 15, 448 (2003).

    Article  Google Scholar 

  3. S. Kumar and T. Nann, Small 2, 316 (2006).

    Article  Google Scholar 

  4. W. Han and M. Gao, Cryst. Growth Des. 8, 1023 (2008).

    Article  Google Scholar 

  5. C. E. M. Campos, J. C. De Lima, T. A. Grandi, K. D. Machado, and P. S. Pizani, Solid State Commun. 123, 179 (2002).

    Article  Google Scholar 

  6. B. Ouertani, J. Ouerfelli, M. Saadoun, M. Zribi, M. B. Rabha, B. Bessais, and H. Ezzaouia, Thin Solid Films 511, 457 (2006).

    Article  Google Scholar 

  7. H. J. Kwon, S. Thanikaikarasan, T. Mahalingam, K. H. Park, C. Sanjeeviraja, and Y. D. Kim, J. Mater. Sci.: Mater. Electron. 19, 1086 (2008).

    Google Scholar 

  8. T. Harada, J. Phys. Soc. Jpn. 67, 1352 (1998).

    Article  Google Scholar 

  9. Y. Takemura, H. Suto, N. Honda, K. Kakuno, and K. Saito, J. Appl. Phys. 81, 5177 (1997).

    Article  Google Scholar 

  10. A. M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan, Angew. Chem. Int. Ed. 44, 4391 (2005).

    Article  Google Scholar 

  11. F. L. Zheng, G. R. Li, Y. N. Ou, Z. L. Wang, C. Y. Su, and Y. X. Tong, Chem. Commun. 46, 5021 (2010).

    Article  Google Scholar 

  12. L. J. Liu, J. G. Guan, W. D. Shi, Z. G. Sun, and J. S. Zhao, J. Phys. Chem. C 114, 13565 (2010).

    Article  Google Scholar 

  13. B. Yuan, W. Luan, and S. T. Tu, Dalton Trans. 41, 772 (2012).

    Article  Google Scholar 

  14. J. Xu, K. Jang, J. Lee, H. J. Kim, J. Jeong, J. G. Park, and S. U. Son, Cryst. Growth Des. 11, 2707 (2011).

    Article  Google Scholar 

  15. W. J. Wang, X. Pan, W. Q. Liu, B. Zhang, H. W. Chen, X. Q. Fang, J. X. Yao, and S. Y. Dai, Chem. Commun. 50, 2618 (2014).

    Article  Google Scholar 

  16. L. Q. Mai, Y. Gao, J. G. Guan, B. Hu, L. Xu, and W. Jin, Int. J. Electrochem. Sci. 4, 755 (2009).

    Google Scholar 

  17. D. S. Kong, J. J. Cha, H. T. Wang, H. R. Lee, and Y. Cui, Energ. Environ. Sci. 6, 3553 (2013).

    Article  Google Scholar 

  18. M. R. Gao, Z. Y. Lin, J. Jiang, H. B. Yao, Y. M. Lu, Q. Gao, and S. H. Yu, Chem. Eur. J. 17, 5068 (2011).

    Article  Google Scholar 

  19. B. Ma, Z. Nie, C. Liu, M. Kang, F. Bardelli, F. Chen, and L. Charlet, Sci. China Chem. 57, 1300 (2014).

    Article  Google Scholar 

  20. K. W. Liu, J. Y. Zhang, D. Z. Shen, C. X. Shan, B. H. Li, Y. M. Lu, and X. W. Fan, Appl. Phys. Lett. 90, 262503 (2007).

    Article  Google Scholar 

  21. W. Shi, X. Zhang, G. Che, W. Fan, and C. Liu, Chem. Eng. J. 15, 508 (2013).

    Article  Google Scholar 

  22. N. Hamdadou, J. C. Bernede, and A. Khelil, J. Cryst. Growth 241, 313 (2002).

    Article  Google Scholar 

  23. S. Huang, Q. He, W. Chen, J. Zai, Q. Qiao, and X. Qian, Nano Energy 15, 205 (2015).

    Article  Google Scholar 

  24. X. Zhang, G. Che, W. Fan, and W. Shi, Micro Nano Lett. 7, 1076 (2012).

    Article  Google Scholar 

  25. T. Suzuki, K. Uchinokura, T. Sekine, and E. Matsuura, Solid State Commun. 23, 847 (1977).

    Article  Google Scholar 

  26. H. D. Lutz, J. Himmrich, B. Müller, and G. Schneider, J. Phys. Chem. Solids 53, 815 (1992).

    Article  Google Scholar 

  27. J. Shang, W. C. Hao, X. J. Lv, T. M. Wang, X. L. Wang, Y. Du, S. X. Dou, T. F. Xie, D. J. Wang, and J. O. Wang, ACS Catal. 4, 954 (2014).

    Article  Google Scholar 

  28. X. Y. Chang, Z. H. Zhang, R. Wu, J. Li, and J. K. Jian, J. Alloys Compd. 615, 912 (2014).

    Article  Google Scholar 

  29. D. Y. Wan, Y. T. Wang, B. Y. Wang, C. X. Ma, H. Sun, and L. Wei, J. Cryst. Growth 253, 230 (2003).

    Article  Google Scholar 

  30. X. Mao, J. G. Kim, J. Han, H. S. Jung, S. G. Lee, N. A. Kotov, and J. Lee, J. Am. Chem. Soc. 136, 7189 (2014).

    Article  Google Scholar 

  31. I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, and A. Eychmüller, Opt. Lett. 35, 1079 (2010).

    Article  Google Scholar 

  32. L. M. Maestro, J. E. Ramirez-Hernandez, N. Bogdan, J. A. Capobianco, F. Vetrone, J. Garcia Sole, and D. Jaque, Nanoscale 4, 298 (2012).

    Article  Google Scholar 

  33. J. Khatei, C. S. S. Sandeep, R. Philip, and K. S. R. K. Rao, Appl. Phys. Lett. 100, 081901 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jikang Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Jian, J., Cai, G. et al. Three-dimensional FeSe2 microflowers assembled by nanosheets: Synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction. Electron. Mater. Lett. 12, 237–242 (2016). https://doi.org/10.1007/s13391-016-5377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-5377-x

Keywords

Navigation