Skip to main content
Log in

Comprehensive study on critical role of surface oxygen vacancies for 2DEG formation and annihilation in LaAlO3/SrTiO3 heterointerfaces

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Here we report comprehensive study of 2DEG at a-LAO/STO interfaces in comparison with 2DEG at crystalline LaAlO3 (c-LAO)/STO interfaces. We observe that the oxygen deficient environment during the deposition of LAO overlayer is essentially required to create 2DEG at LAO/STO interface regardless of growth temperature from 25°C to 700°C, indicating that the oxygen-poor condition in the system is more important than the crystallinity of LAO layer. The critical thickness (2.6 nm) of 2DEG formation at a-LAO/STO heterostructure is thicker than (1.6 nm) that at c-LAO/STO. Upon ex-situ annealing at 300°C under 300 mTorr of oxygen pressure, 2DEG at a-LAO/STO interface is annihilated, while that in c-LAO/STO interface is still maintained. With combing these findings and scanning transmission electron microscope (STEM) analysis, we suggest that oxygen vacancies at the LAO surface is attributed to the origin of 2DEG formation at the LAO/STO and the crystallinity of the LAO overlayer plays a critical role in the annihilation of 2DEG at a-LAO/STO interface rather than in the formation of 2DEG. This work provides a framework to understand the importance of prohibiting the LAO surface from being oxidized for achieving thermally stable 2DEG at a-LAO/STO interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ahn, J. M. Triscone, and J. Mannhart, Nature 424, 1015 (2003).

    Article  Google Scholar 

  2. H. Takagi and H. Y. Hwang, Science 327, 1601 (2010).

    Article  Google Scholar 

  3. Y. Tokura and H. Y. Hwang, Nat. Mater. 7, 694 (2008).

    Article  Google Scholar 

  4. H. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).

    Article  Google Scholar 

  5. J. Mannhart and D. Schlom, Science 327, 1607 (2010).

    Article  Google Scholar 

  6. D. G. Schlom and J. Mannhart, Nat. Mater. 10, 168 (2011).

    Article  Google Scholar 

  7. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).

    Article  Google Scholar 

  8. M. Basletic, J. L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, É. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthélémy, Nat. Mater. 7, 621 (2008).

    Article  Google Scholar 

  9. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006).

    Article  Google Scholar 

  10. A. Ohtomo and H. Hwang, Nature 427, 423 (2004).

    Article  Google Scholar 

  11. S. Thiel, G. Hammerl, A. Schmehl, C. Schneider, and J. Mannhart, Science 313, 1942 (2006).

    Article  Google Scholar 

  12. J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Phys. 7, 767 (2011).

    Article  Google Scholar 

  13. D. Dikin, M. Mehta, C. Bark, C. Folkman, C. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107, 056802 (2011).

    Article  Google Scholar 

  14. B. Kalisky, E. M. Spanton, H. Noad, J. R. Kirtley, K. C. Nowack, C. Bell, H. K. Sato, M. Hosoda, Y. Xie, and Y. Hikita, Nat. Mater. 12, 1091 (2013).

    Article  Google Scholar 

  15. L. Li, C. Richter, J. Mannhart, and R. Ashoori, Nat. Phys. 7, 762 (2011).

    Article  Google Scholar 

  16. C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).

    Article  Google Scholar 

  17. S. J. Choi, K. H. Kim, W. Y. Yang, H. I. Lee, and S. Cho, Electron. Mater. Lett. 10, 57 (2014).

    Article  Google Scholar 

  18. A. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Nature 456, 624 (2008).

    Article  Google Scholar 

  19. Z. Zheng and Y. Chen, Electron. Mater. Lett. 10, 383 (2014).

    Article  Google Scholar 

  20. M. S. P. Reddy, J. H. Lee, and J. S. Jang, Electron. Mater. Lett. 10, 411 (2014)w

    Article  Google Scholar 

  21. F. Bi, D. F. Bogorin, C. Cen, C. W. Bark, J. W. Park, C. B. Eom, and J. Levy, Appl. Phys. Lett. 90, 173110 (2010).

    Article  Google Scholar 

  22. Y. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, Nat. Commun. 2, 494 (2011).

    Article  Google Scholar 

  23. N. Bristowe, P. Littlewood, and E. Artacho, Phys. Rev. B 83, 205405 (2011).

    Article  Google Scholar 

  24. Y. Chen, N. Bovet, F. Trier, D. Christensen, F. Qu, N. H. Andersen, T. Kasama, W. Zhang, R. Giraud, and J. Dufouleur, Nat. Commun. 4, 1371 (2013).

    Article  Google Scholar 

  25. H. W. Jang, D. Felker, C. Bark, Y. Wang, M. K. Niranjan, C. Nelson, Y. Zhang, D. Su, C. Folkman, S. H. Baek, S. Lee, K. Janicka, Y. Zhu, X. Q. Pan, D. D. Fong, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Science 331, 886 (2011).

    Article  Google Scholar 

  26. S. Y. Moon, D. H. Kim, H. J. Chang, J. K. Choi, C. Y. Kang, H. J. Choi, S. H. Hong, S. H. Baek, J. S. Kim, and H. W. Jang, Appl. Phys. Lett. 102, 012903 (2013).

    Article  Google Scholar 

  27. C. Bark, D. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. Folkman, J. Park, S. Baek, H. Zhou, and D. Fong, Proc. Natl. Acad. Sci. U. S. A. 108, 4720 (2011).

    Article  Google Scholar 

  28. G. Herranz, F. Sánchez, N. Dix, M. Scigaj, and J. Fontcuberta, Sci. Rep. 2, 758 (2012).

    Article  Google Scholar 

  29. Y. Chen, N. Pryds, J. E. Kleibeuker, G. Koster, J. Sun, E. Stamate, B. Shen, G. Rijnders, and S. Linderoth, Nano Lett. 11, 3774 (2011).

    Article  Google Scholar 

  30. J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, Nat. Mater. 9, 482 (2010).

    Article  Google Scholar 

  31. O. Tufte and P. Chapman, Phys. Rev. 155, 796 (1967).

    Article  Google Scholar 

  32. Y. Kozuka, M. Kim, C. Bell, B. G. Kim, Y. Hikita, and H. Hwang, Nature 462, 487 (2009).

    Article  Google Scholar 

  33. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, and M. Hirano, Nat. Mater. 6, 129 (2007).

    Article  Google Scholar 

  34. K. Ismail, M. Arafa, K. Saenger, J. Chu, and B. Meyerson, Appl. Phys. Lett. 66, 1077 (1995).

    Article  Google Scholar 

  35. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).

    Article  Google Scholar 

  36. H. Morkoc, S. Strite, G. Gao, M. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  37. L. Yu and A. Zunger, Nat. Commun. 5, 5118 (2014).

    Article  Google Scholar 

  38. S. I. Kim, D. H. Kim, Y. Kim, S. Y. Moon, M. G. Kang, J. K. Choi, H. W. Jang, S. K. Kim, J. W. Choi, and S. J. Yoon, Adv. Mater. 25, 4612 (2013).

    Article  Google Scholar 

  39. S. W. Lee, Y. Liu, J. Heo, and R. G. Gordon, Nano Lett. 12, 4775 (2012).

    Article  Google Scholar 

  40. C. Cen, S. Thiel, G. Hammerl, C. Schneider, K. Andersen, C. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7, 298 (2008).

    Article  Google Scholar 

  41. C. Bell, S. Harashima, Y. Hikita, and H. Hwang, Appl. Phys. Lett. 94, 222111 (2009).

    Article  Google Scholar 

  42. P. Willmott, S. Pauli, R. Herger, C. Schlepütz, D. Martoccia, B. Patterson, B. Delley, R. Clarke, D. Kumah, and C. Cionca, Phys. Rev. Lett. 99, 155502 (2007).

    Article  Google Scholar 

  43. M. Stengel and D. Vanderbilt, Phys. Rev. B 80, 241103 (2009).

    Article  Google Scholar 

  44. S. A. Chambers, M. H. Engelhard, V. Shutthanandan, Z. Zhu, T. C. Droubay, L. Qiao, P. Sushko, T. Feng, H. D. Lee, and T. Gustafsson, Surf. Sci. Rep. 65, 317 (2010).

    Article  Google Scholar 

  45. K.-H. Hong, H. S. Choi, I. Hwang, and J. Kim, Electron. Mater. Lett. 10, 363 (2014).

    Article  Google Scholar 

  46. C. Bark, P. Sharma, Y. Wang, S. H. Baek, S. Lee, S. Ryu, C. Folkman, T. R. Paudel, A. Kumar, and S. V. Kalinin, Nano Lett. 12, 1765 (2012).

    Article  Google Scholar 

  47. X. Luo, B. Wang, and Y. Zheng, Phys. Rev. B 80, 104115 (2009).

    Article  Google Scholar 

  48. X. B. Lu, Z. G. Liu, Y. P. Wang, Y. Yang, X. P. Wang, H. W. Zhou and B. Y. Nguyen, J. Appl. Phys. 94, 1229 (2003).

    Article  Google Scholar 

  49. L. Edge, D. Schlom, P. Sivasubramani, R. Wallace, B. Hollander, and J. Schubert, Appl. Phys. Lett. 88, 112907 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Hyub Baek or Ho Won Jang.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S.Y., Moon, C.W., Chang, H.J. et al. Comprehensive study on critical role of surface oxygen vacancies for 2DEG formation and annihilation in LaAlO3/SrTiO3 heterointerfaces. Electron. Mater. Lett. 12, 243–250 (2016). https://doi.org/10.1007/s13391-015-5402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5402-5

Keywords

Navigation